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Diffusion models and denoising

Do diffusion models memorize the training set [Carlini et al, 
2023, Somepalli et al, 2023] or generalize to learn continuous 
density models of images, despite the curse of dimensionality?  

[Tweedie, via Robbins, 1956; Miyasawa, 1961]
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What are inductive biases of the denoiser which give rise to 
generalization?
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1.  Transform the noisy image to a basis where noise and signal are separable 

2.  Suppress the noise (shrinkage) 

3.  Transform back to the pixel domain 

Classical framework for denoising:

Bias- free CNN (BF-CNN): 

Jacobian w.r.t. Input y (Nearly symmetric) [Mohan*, Kadkhodaie* et al 2020]

where 
Optimal denoiser:

Model density error is bounded by the denoiser error, integrated over σ

Empirical denoiser: where

There is a transition phase from memorization to generalization and with 
enough data, the network enters the generalization regime

• Small training set size, N {1,10}: models memorize the training images. 

• N = 100: peculiar performance behavior indicates a transition phase. 

• N = 10,000: test performance matches train performance (classic test for overfitting).
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 Two denoisers trained on non-overlapping training sets converge to almost the same function 

The model variance is tending to zero. 

Denoising as shrinkage in a basis

Locally linear function 

(no additive constants in the network)

Eigen basis: Shrinkage factors: 

Oscillating patterns along the contours and in smooth regions
Eigen basis adaptive to the underlying image

Sparse coefficients 

fast rate of decay of Eigenvalues  

better denoising
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Conjecture: DNN denoisers have inductive biases towards learning GAHBs 

Aligned inductive biases and optimality

Geometric  imagesCα

Optimal denoiser on  images has slope . Cα α
α + 1

[Korostelev & Tsybakov, 1993]

This optimal slope is also obtained by best “bandlet” 
basis denoising estimators.

[Peyré & Mallat, 2008]

When the optimal basis is GAHB, DNN 
achieves optimal denoising: alignment  

Mis-aligned inductive biases and sub-optimality

Manifold of discs: Varying positions, sizes, and foreground/background intensities. Defines a five-dimensional 
curved manifold

Five dimensional tangent space of the image manifold

closely match the optimal basis GAHB vectors with non-zero λk

The rest of the basis can be arbitrary, but it produces GAHB vectors, and it does not cut them off.

DNNs achieve this generalization through an inductive bias that favors shrinkage in a GAHB.


