Generalization in diffusion models
arises from geometric-adaptive harmonic bases
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Do diffusion models memorize the training set [Carlini et al,
2023, Somepalli et al, 2023] or generalize to learn continuous
density models of images, despite the curse of dimensionality?

What are inductive biases of the denoiser which give rise to
generalization?

Diffusion models and denoising Denoising as shrinkage in a basis

Yy =x+ 2z  where 2 ~ N(O,J2Id)

Classical framework for denoising:

1. Transform the noisy image to a basis where noise and signal are separable
ps(y) = [ plylr)p(z)dz = | g9,(y — =) p(z) dz, 2.  Suppress the noise (shrinkage)
3. Transform back to the pixel domain

Optimal denoiser: f*(y) = Igl[wly] — /mp(ﬂy)dxty + 0 Vlogpa(y) )

[Tweedie, via Robbins, 1956; Miyasawa, 1961]

f(y) == WLR(WL—lR(le)) — Ayy7 Locally linear function

(no additive constants in the network)

f(y) — Vf(y) Yy Jacobian w.r.t. Input y (Nearly symmetric) [Mohan*, Kadkhodaie* et al 2020]
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3 Aligned inductive biases and optimality
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Mis-aligned inductive biases and sub-optimality

Manifold of discs: Varying positions, sizes, and foreground/background intensities. Defines a five-dimensional
curved manifold
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closely match the optimal basis GAHB vectors with non-zero 4,

The rest of the basis can be arbitrary, but it produces GAHB vectors, and it does not cut them off.

DNNs achieve this generalization through an inductive bias that favors shrinkage in a GAHB.



