Do diffusion models generalize?

Zahra Kadkhodaie NYU

Eero Simoncelli NYU & Flatiron Institute

Stéphane Mallat Collège de France & Flatiron Institute

COLLÈGE

DE FRANCE

-1530-

Generalization vs memorization

- Generative models can reproduce new images...
- ...but also memorize their training set
- Does the learned model depend on the individual training samples?

[Ho et al, 2022]

Generating images with the score

Forward process: diffuse images by adding noise

By reversing time, we can generate new images if we know the score!

(Song & Ermon, 2019; Ho et al., 2020; Kadkhodaie & Simoncelli, 2020)

Learning the score by denoising

The score can be rewritten as a conditional expectation:

$$\nabla \log p(x_t) = \mathbb{E}[\nabla \log p(x_t | x_0) | x_t] = \frac{1}{t}(0)$$
(marginalization) (0)

We can learn it by least-squares regression (denoising)!

$$\min_{f} \mathbb{E}\left[\|x_0 - f(x_t)\|^2\right]$$

 X_0

 $\nabla \log p(x_t) \approx \frac{1}{t} (f(x_t) - x_t)$

- $(\mathbb{E}[x_0 | x_t] x_t)$
- Gaussianity)

(Miyasawa, 1961; Tweedie, via Robbins, 1956)

The dangers of memorization

- training samples $\{x_1, \ldots, x_n\}$
- other words, memorize the training set

$$f(y) = \sum_{i=1}^{n} w_i(y) x_i$$

- The resulting network always generate one of the training images
- We rely on the network **not to perfectly minimize** the training loss!

• In practice, we approximate the 'true' p_{data} with an empirical distribution of

The optimal solution is then to learn a model of this empirical distribution: in

$$w_i(y) \propto e^{-\frac{\|y-x_i\|^2}{t}}$$

From memorization to generalization

images with the training images.

Initial noise sample (fixed)

$$n = 10$$

Closest training image

- We train networks on *n* face images for increasing *n*, and compare the generated (Yoon et al, 2023)
 - n = 100 n = 1,000 n = 10,000 n = 100,000

From memorization to generalization (bis)

of face images.

Initial noise sample (fixed)

Closest training image (B)

We repeat the analysis with networks trained on another, non-overlapping set

From memorization to generalization (ter)

Let us compare the mages generated by the two networks from the same noise sample.

Generated image (A)

Generated image (B)

Memorized images from respective training sets

Strong evidence of generalization. Which inductive biases allow the networks to beat the curse of dimensionality?

n = 1 n = 10 n = 100 n = 1,000 n = 10,000 n = 100,000

Identical generated image from neither of the training sets

Inductive biases: teaser

Direct link between generalization and optimality of denoising

$$D_{\mathrm{KL}}(p(x) \| p_{\theta}(x)) \leq \int_{0}^{\infty} \left(\mathrm{MSE}(f_{\theta}, \sigma^{2}) - \mathrm{MSE}(f^{\star}, \sigma^{2}) \right) \sigma^{-3} \,\mathrm{d}\sigma,$$

- Deviations from optimality tell us about the inductive biases of the network!

Optimality (aligned inductive biases) Geometric C^{α} images $\alpha = 2$

 $\alpha = 4$

(Korostelev & Tsybakov, 1993; Donoho, 1999; Peyré & Mallat, 2008)

Focus on synthetic datasets where we know (approximately) the optimal denoiser

Suboptimality (misaligned inductive biases) Shuffled faces Low-dimensional manifolds

More details: arXiv:2310.02557

Summary

- training set size increases
 - resolution, etc...
- the training samples!
 - The networks learn the same underlying function
- lacksquaregeometric structures (see paper for more details)

Kadkhodaie, FG, Simoncelli, and Mallat. Generalization in diffusion models arises from geometry-adaptive harmonic representations. arXiv:2310.02557, ICLR, 2024.

Diffusion models transition from memorization to generalization when the

• Note: the critical training size depends on the network architecture, image

• Strong generalization: we learn the same probability model independently of

This generalization relies on inductive biases towards high-dimensional