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Generalization vs memorization
• Generative models can reproduce new images…

[Ho et al, 2022]

[Somepalli et al,  2023]
[Carlini et al, 2023]

• …but also memorize their training set

• Does the learned model depend on the individual 
training samples?



Generating images with the score

(Song & Ermon, 2019; Ho et al., 2020; Kadkhodaie & Simoncelli, 2020)

Forward process: diffuse images by adding noise

xt+dt ∼ 𝒩(xt, dt Id)x0 ∼ pdata xT ∼ 𝒩(0, T Id)
t

xt

xT ∼ 𝒩(0, T Id)x0 ∼ pdata

By reversing time, we can generate new images if we know the score!

t

xt

xt−dt ∼ 𝒩(xt + dt∇log p(xt), dt Id)



(Miyasawa, 1961; Tweedie, via Robbins, 1956)

Learning the score by denoising

∇log p(xt) = 𝔼[∇log p(xt |x0) |xt] = 1
t

(𝔼[x0 |xt] − xt)
(marginalization) (Gaussianity)

The score can be rewritten as a conditional expectation:

min
f

𝔼 [∥x0 − f(xt)∥2]

We can learn it by least-squares regression (denoising)!

Add noise Denoise

x0 xt f(xt)

∇log p(xt) ≈ 1
t

( f(xt) − xt)



The dangers of memorization
• In practice, we approximate the ‘true’  with an empirical distribution of 

training samples 
pdata

{x1, …, xn}

• The optimal solution is then to learn a model of this empirical distribution: in 
other words, memorize the training set


f(y) =
n

∑
i=1

wi(y) xi wi(y) ∝ e− ∥y − xi∥2
t

• The resulting network always generate one of the training images

• We rely on the network not to perfectly minimize the training loss!



From memorization to generalization

n = 1 n = 10 n = 100 n = 1,000 n = 10,000 n = 100,000

Initial noise

sample (fixed)

Generated

image

Closest training

image

We train networks on  face images for increasing , and compare the generated 
images with the training images. 

n n
(Yoon et al, 2023)



From memorization to generalization (bis)

n = 1 n = 10 n = 100 n = 1,000 n = 10,000 n = 100,000

Initial noise

sample (fixed)

Generated

image (B)

Closest training

image (B)

We repeat the analysis with networks trained on another, non-overlapping set 
of face images.



From memorization to generalization (ter)

n = 1 n = 10 n = 100 n = 1,000 n = 10,000 n = 100,000

Generated

image (B)

Let us compare the mages generated by the two networks from the same 
noise sample.

Generated

image (A)

Strong evidence of generalization. 
Which inductive biases allow the networks to beat the curse of dimensionality?

Memorized images

from respective 

training sets

Identical 
generated image 

from neither of the 
training sets



Suboptimality (misaligned inductive biases)
Shuffled faces

Inductive biases: teaser
• Direct link between generalization and optimality of denoising




• Focus on synthetic datasets where we know (approximately) the optimal denoiser

• Deviations from optimality tell us about the inductive biases of the network!

Optimality (aligned inductive biases) 
Geometric  imagesCα

α = 2 α = 4

(Korostelev & Tsybakov, 1993; 
Donoho, 1999; Peyré & Mallat, 2008)

More details: arXiv:2310.02557

Low-dimensional manifolds



• Diffusion models transition from memorization to generalization when the 
training set size increases


• Note: the critical training size depends on the network architecture, image 
resolution, etc…


• Strong generalization: we learn the same probability model independently of 
the training samples!


• The networks learn the same underlying function


• This generalization relies on inductive biases towards high-dimensional 
geometric structures (see paper for more details)

Summary

Kadkhodaie, FG, Simoncelli, and Mallat. Generalization in diffusion models arises from geometry-adaptive harmonic representations. 
arXiv:2310.02557, ICLR, 2024.


