Do diffusion models generalize?
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Generalization vs memorization

* (Generative models can reproduce new images...
e ...but also memorize their training set

 Does the learned model depend on the individual
training samples?
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[Carlini et al, 2023]



Generating images with the score

Forward process: diffuse images by adding noise

Xeoqr ~ N (x, de1d) xp~ N0, T1d)

By reversing time, we can generate new images if we know the score!

(Song & Ermon, 2019; Ho et al., 2020; Kadkhodaie & Simoncelli, 2020)



Learning the score by denoising

The score can be rewritten as a conditional expectation:

1
Vl()gp(xt) — _[Vlogp(xtle) ‘xz] — 7( _[X() ‘Xt] — Xt)
(marginalization) (Gaussianity)

We can learn it by least-squares regression (denoising)!

min E |[|lxo —f(x)]1%]
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The dangers of memorization

» In practice, we approximate the ‘true’ p4.., with an empirical distribution of
training samples {x;, ..., X, }

 The optimal solution is then to learn a model of this empirical distribution: Iin
other words, memorize the training set
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* The resulting network always generate one of the training images

* We rely on the network not to perfectly minimize the training loss!



From memorization to generalization

We train networks on n face images for increasing n, and compare the generated
Images with the training images. (Yoon et al, 2023)
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From memorization to generalization (bis)

We repeat the analysis with networks trained on another, non-overlapping set
of face images.
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From memorization to generalization (ter)

Let us compare the mages generated by the two networks from the same
noise sample.
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Strong evidence of generalization.
Which inductive biases allow the networks to beat the curse of dimensionality?



Inductive biases: teaser

* Direct link between generalization and optimality of denoising
Dt (@) [ po(a)) < [ (MSE(fy,0%) = MSE(f*,0)) 0™ do
0

* Focus on synthetic datasets where we know (approximately) the optimal denoiser
* Deviations from optimality tell us about the inductive biases of the network!

Suboptimality (misaligned inductive biases)

Geometric C“ images
a=?2 a=4

More detalls: arXiv:2310.02557



Summary

* Diffusion models transition from memorization to generalization when the
training set size increases

e Strong generalization: we learn the same probability model independently of
the training samples!

* The networks learn the same underlying function

* This generalization relies on inductive biases towards high-dimensional
geometric structures (see paper for more details)



