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Introduction

CNNs progressively increase linear separability of image classes while col-
lapsing spatial dimensions:

What is the role of the non-linearity and the network weights in this phe-
nomenon?
Contributions:

We show that a phase collapse of complex wavelet coefficients is both
sufficient and necessary to reach ResNet-18 accuracy on ImageNet.
Contrarily, iterated amplitude reductions, which threshold
coefficients but preserve the phase, reach significantly lower accuracies.

⇒ Provides an interpretation of the underlying functional role of
ReLUs, otherwise hidden because of their flexibility.

Small Translations as Phase Shifts

Complex wavelets diagonalize translations: a small translation τ of
an image x is represented by a phase shift after a convolution with a complex
wavelet ψ:

(τ · x) ∗ ψ ≈ e−iξ·τ(x ∗ ψ)
with a relative error bounded by σ|τ |.
ψ is a complex wavelet with center frequency ξ and spectral bandwidth σ:

Real part Imaginary part Modulus Phase

For a class x invariant to translations, x ∗ ψ has a circularly-symmetric
distribution because of phase shifts: ∀θ, eiθx d= x.

Class Mean Separation with Phase Collapses

Wavelet coefficients x ∗ψ all have zero means for all translation-
invariant classes. Linear classification cannot then use this information
to discriminate such classes.
Phase collapse is defined as a complex modulus applied to
wavelet coefficients. It can also be computed with real filters and Re-
LUs.

Phase collapse concentrates translation variability, which can
separate class means.

Learned Scattering Network with Phase Collapses

We introduce an architecture which iterates fixed phase collapses |W| and
learned 1 × 1 convolutions (Pj)j. There are no biases.

Skip-connections allow keeping some spatial information, which can be use-
ful as input images are not fully stationary.
Reaches ResNet-18 accuracy on ImageNet with only 12 layers,
largely outperforming the scattering baseline for which (Pj)j are predefined.

Error (%) Scat LScat LScat + skip ResNet
CIFAR-10 27.7 11.7 7.7 8.8

ImageNet Top-5 54.1 15.2 11.0 10.9
Top-1 73.0 35.9 30.1 30.2

ReLU and Phase Collapse

The ReLU can be decomposed into its even part, an absolute value with a
dead-zone, and its odd part, a soft-thresholding:

The absolute value collapses the sign (or phase over C), which is in con-
trast preserved by a soft-thresholding. Phase-preserving non-linearities
cannot separate circularly-symmetric distributions, which keep
zero means.
Indeed, replacing the modulus with a complex soft-tresholding leads to a
three-fold increase in classification error.

Error (%) Scat LScat + skip (cst) LScat + skip (mod) ResNet
CIFAR-10 27.7 22.5 7.7 8.8

Those results hold true when more general phase preserving are used. Sim-
ilarly, replacing ReLUs with soft-thresholding within a standard ResNet
architecture considerably degrades performances, while absolute values pre-
serve high accuracies.
It is thus necessary for the non-linearity to act on the phase.

Conclusion

ReLUs with biases can affect both the phase (absolute values) and the
amplitude (soft-thresholdings) of network coefficients.
Linear separation of classes results from acting on the phase rather than
the amplitude.
This can be constrained to collapsing the phase of wavelet coefficients.

⇒ Phase collapses are both necessary and sufficient to linearly
separate classes.

Ongoing work: analyze the learned channel operators (Pj)j to design more
efficient architectures with fewer parameters.
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