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Spatial resolution \, number of channels *
Separation and concentration

CNN classifiers simultaneously move spatial information into
channels and increase linear separation

Can we define a non-linear operator with these properties?
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Decomposition of ReLU

RelUs can can be separated in two opposite non-linearities with an
even-odd decomposition:
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Decomposition of RelLU

RelUs can can be separated in two opposite non-linearities with an
even-odd decomposition:

» Absolute value: collapses the sign, preserves the amplitude

» Soft-thresholding: preserves the sign, thresholds the amplitude
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Concentration with soft-thresholding
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Concentration with soft-thresholding

Denoised estimation

Thresholding
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Separation with phase collapse

» Images have group variability: x and g - © have the same class
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Separation with phase collapse

» Images have group variability: x and g - © have the same class

» Diagonalization of the group action: (g - z) = eia(g)go(x)

» The group within-class variability is a variability in the phases
of the representation
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Separation with phase collapse

» Images have group variability: x and g - © have the same class

» Diagonalization of the group action: (g - z) = eia(g)go(@

» The group within-class variability is a variability in the phases
of the representation

p(x) o ()]

2. Phase Collapse

.
1) >

4/10



Comparison between sparsity and phase collapse

Concentration with
soft-thresholding

Odd part of ReLU
Collapses small amplitudes

Concentrates additive variability
Does not separate class means
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Performs denoising
Cannot be further sparsified

Separation with
complex modulus

Even part of ReLU
Collapses complex phases

Concentrates multiplicative variability
Separates class means
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Computes support

Can be further sparsified
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Phase collapse versus sparsity: numerical results
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Phase collapse versus sparsity: numerical results

25% 1

£ 20% 1
2
8 15% 1
- ] I I
0% -

ReLU ReLU Abs Thresh Tanh  Sign
ResNet Bias-free ResNet

€]

ImageNet t

o
xX

Phase collapse is sufficient to achieve good performance,
while any non-linearity which preserves the phase is not.
Phase collapse is thus also necessary.

How far can we further constrain the network?
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Diagonalizing local translations

Known source of within-class variability: local translations
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Diagonalizing local translations

Known source of within-class variability: local translations

1 s

> \f I§]

Re(y) Im (1)) |9l a(y)

Small translations 7 of an image x become phase shifts:

(r-a)xpre T (zxp)
with a relative error bounded by o|7|: approximate diagonalization!
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The phase collapse operator

Constrain the spatial filters with the phase collapse operator:
pPa(u) = (3% 6(2u), (|2 * P (2u)]),)

» Mathematical definition: no

\ ! E“ learning
' /] » Combines linear and

[
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Spatial resolution \, number of channeI;/ non-linear invariants to local
Separation and concentration translations
| % (u)| . .
» All the desired properties!
;. Phase Collapse > What accuracy can we
—_

achieve with this?
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Learned scattering network

» Simplified architecture with phase collapses and minimal
learning

» No learned spatial filters nor biases
» Only one learned component: channel matrices at every layer

P> Reaches ResNet-18 accuracy with only 11 layers

Zarka, G, and Mallat. Separation and concentration in deep networks. ICLR, 2021
G, Zarka, and Mallat. Phase collapse in neural networks. ICLR, 2022.
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Thank you!

» Paper: arxiv.org/pdf/2110.05283.pdf
> Code: github.com/FlorentinGuth/PhaseCollapse

» Email: florentin.guth@ens.fr
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https://arxiv.org/pdf/2110.05283.pdf
https://github.com/FlorentinGuth/PhaseCollapse
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