Rainbow Networks: A Model of Learned Weights in Deep Networks
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Introduction & Summary

= Deep networks are considered black boxes. Mathematical models based
on random weights, but either kernel regime (NNGP, NTK) or
one-hidden-layer (mean-field)

* How to understand feature learning in deep networks? What is the
probability distribution of trained weights?

* We introduce the rainbow model of deep networks: random features
but with dependencies between layers

= Rainbow networks can achieve comparable accuracies as trained
networks

Key Concept: Alighed Weight Distributions

Mean-field picture: neurons as samples (random features)

Number of neurons *

Alignment: hidden representations are approximately equal up to a rotation
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CNNs Learn the Same Weights After Alignment

Mean-square alignment error

Mean-square alignment error

Scattering-7 on CIFAR-10

Comparison between weight covariances
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Width scaling
ResNet-18 on ImageNet
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Spectrum after training

1072 5

§_~§
‘h_-~
7] -—
B h‘---
-,
-~ -
P~
5-

&

1073 5

S

—

<,

< 80%
—

. Mcy after weight clipping
6070 1

40% -

o

1 20 40 60 80 100 120
PC Rank

Width scaling

Alignment Convergence of Rainbow Networks

= A random feature map ¢(x)

(™2 o((z,wy)))._ with iid. w,~

defines a kernel (¢(x), p(2)) = %Z?:1U(<£U,wz>) OT(<x/7wi>)

= The law of large number implies it converges towards

Lyl ((z,w)) o ({2, w))] = (¢%(x), 9™(2'))

* For large widths, activations are fixed up to a rotation:

Agp(z) = ¢ (x)

(6(z), $la')) ~ (6™(z), 9= (a)) o) ~ AT ¢ (x)

* Theorem: there exists a closed-form orthogonal A such that

e || Ad(z) — 6(2)[*] = O(n™7)

Assumptions: w has finite fourth-order moments + capacity condition.

 Next layer weights can cancel the rotation: if w = A" w/, then

((z), w) = (¢(z), Al w') = (Ag(z),w') = (¢™(z), w')

https://bonnerlab.github.io/ccn-tutorial /pages/analyzing_neural_networks.html

Gaussian Rainbow Networks

Rainbow network

White random features
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* The Gaussian rainbow model is defined from a trained reference network
with activations ¢y°(x) and weight covariances C; at each layer /¢

= Sample new weights wy; from N (0, Cy) and align them at each layer
= Test on CNNs with learned channels weights but fixed spatial filters
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Insights Into Training Dynamics

During training, weights are linearly stretched without internal motion:
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