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Introduction & Summary

Deep networks are considered black boxes. Mathematical models based
on random weights, but either kernel regime (NNGP, NTK) or
one-hidden-layer (mean-field)
How to understand feature learning in deep networks? What is the
probability distribution of trained weights?
We introduce the rainbow model of deep networks: random features
but with dependencies between layers
Rainbow networks can achieve comparable accuracies as trained
networks

Key Concept: Aligned Weight Distributions

Mean-field picture: neurons as samples (random features)

Alignment: hidden representations are approximately equal up to a rotation

Summary: aligned networks have similar activations and weights

CNNs Learn the Same Weights After Alignment

Alignment Convergence of Rainbow Networks

A random feature map ϕ(x) =
(
n−1/2 σ(⟨x, wi⟩)

)
i≤n

with i.i.d. wi ∼ π

defines a kernel ⟨ϕ(x), ϕ(x′)⟩ = 1
n

∑n
i=1 σ(⟨x, wi⟩) σ(⟨x′, wi⟩)

The law of large number implies it converges towards
Ew∼π[σ(⟨x, w⟩) σ(⟨x′, w⟩)] = ⟨ϕ∞(x), ϕ∞(x′)⟩

For large widths, activations are fixed up to a rotation:

⟨ϕ(x), ϕ(x′)⟩ ≈ ⟨ϕ∞(x), ϕ∞(x′)⟩ =⇒

A ϕ(x) ≈ ϕ∞(x)
ϕ(x) ≈ AT ϕ∞(x)

Theorem: there exists a closed-form orthogonal A such that
EW,x

[
∥A ϕ(x) − ϕ∞(x)∥2] = O(n−γ)

Assumptions: π has finite fourth-order moments + capacity condition.
Next layer weights can cancel the rotation: if w = AT w′, then

⟨ϕ(x), w⟩ =
⟨
ϕ(x), AT w′⟩ = ⟨A ϕ(x), w′⟩ ≈ ⟨ϕ∞(x), w′⟩

Gaussian Rainbow Networks

The Gaussian rainbow model is defined from a trained reference network
with activations ϕ∞

ℓ (x) and weight covariances Cℓ at each layer ℓ

Sample new weights wℓ,i from N (0, Cℓ) and align them at each layer
Test on CNNs with learned channels weights but fixed spatial filters
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Insights Into Training Dynamics

During training, weights are linearly stretched without internal motion:
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