
What has my network learned?
The rainbow model
of deep networks

Florentin Guth

Brice Ménard Gaspar Rochette Stéphane Mallat



What has the network learned?

Every time we train a network, we get a different set of weights
because of the random initialization

▶ What is random and what is stable across different training
runs?

▶ What is the distribution of trained network weights?

1 / 10



What has the network learned?

Every time we train a network, we get a different set of weights
because of the random initialization

▶ What is random and what is stable across different training
runs?

▶ What is the distribution of trained network weights?

1 / 10



What has the network learned?

Every time we train a network, we get a different set of weights
because of the random initialization

▶ What is random and what is stable across different training
runs?

▶ What is the distribution of trained network weights?
1 / 10



Comparing first layer weights
Feature dim 1

Feature dim 2

Mean-field (infinite-width) limit 1
n

n∑
i=1

δwi
−−−→
n→∞

π

(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)

Neurons are random samples from some fixed distribution
(random features)

2 / 10



Comparing first layer weights
Feature dim 1

Feature dim 2

Feature dim 1

Feature dim 2

Mean-field (infinite-width) limit 1
n

n∑
i=1

δwi
−−−→
n→∞

π

(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)

Neurons are random samples from some fixed distribution
(random features)

2 / 10



Comparing first layer weights
Feature dim 1

Feature dim 2

Feature dim 1

Feature dim 2

Mean-field (infinite-width) limit 1
n

n∑
i=1

δwi
−−−→
n→∞

π

(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)

Neurons are random samples from some fixed distribution
(random features)

2 / 10



Comparing first layer weights
Feature dim 1

Feature dim 2

Feature dim 1

Feature dim 2

Mean-field (infinite-width) limit 1
n

n∑
i=1

δwi
−−−→
n→∞

π

(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)

Neurons are random samples from some fixed distribution
(random features)

2 / 10



Comparing first layer weights
Feature dim 1

Feature dim 2

Feature dim 1

Feature dim 2

Mean-field (infinite-width) limit 1
n

n∑
i=1

δwi
−−−→
n→∞

π

(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)

Neurons are random samples from some fixed distribution
(random features)

2 / 10



Comparing first layer activations

Random feature activations: ϕ(x) = n−1/2(σ(⟨wi, x⟩))i≤n with
wi ∼ π i.i.d.

⟨ϕ(x), ϕ(x′)⟩ = 1
n

n∑
i=1

σ(⟨wi, x⟩) σ(⟨wi, x′⟩) → Ew∼π

[
σ(⟨w, x⟩) σ(⟨w, x′⟩)

]

Activations are equal up to rotations: they correspond to a
deterministic representation expressed in a random basis

(Rahimi and Recht, 2007; Haxby et al., 2011; Kornblith et al., 2019)
3 / 10



Comparing first layer activations

Random feature activations: ϕ(x) = n−1/2(σ(⟨wi, x⟩))i≤n with
wi ∼ π i.i.d.

⟨ϕ(x), ϕ(x′)⟩ = 1
n

n∑
i=1

σ(⟨wi, x⟩) σ(⟨wi, x′⟩) → Ew∼π

[
σ(⟨w, x⟩) σ(⟨w, x′⟩)

]

Activations are equal up to rotations: they correspond to a
deterministic representation expressed in a random basis

(Rahimi and Recht, 2007; Haxby et al., 2011; Kornblith et al., 2019)
3 / 10



Comparing first layer activations

Random feature activations: ϕ(x) = n−1/2(σ(⟨wi, x⟩))i≤n with
wi ∼ π i.i.d.

⟨ϕ(x), ϕ(x′)⟩ = 1
n

n∑
i=1

σ(⟨wi, x⟩) σ(⟨wi, x′⟩) → Ew∼π

[
σ(⟨w, x⟩) σ(⟨w, x′⟩)

]

Activations are equal up to rotations: they correspond to a
deterministic representation expressed in a random basis

(Rahimi and Recht, 2007; Haxby et al., 2011; Kornblith et al., 2019)
3 / 10



Comparing second layer weights

min
A

T
A=Id

Ex

[
∥A ϕ(x) − ϕ(x)∥2

]
A ϕ(x) ≈ ϕ(x)

⟨wi, ϕ(x)⟩ ≈ ⟨wi, ATϕ(x)⟩ = ⟨A wi, ϕ(x)⟩

Neurons are random samples from some fixed distribution
expressed in the random basis of its input activations

4 / 10



Comparing second layer weights

min
A

T
A=Id

Ex

[
∥A ϕ(x) − ϕ(x)∥2

]
A ϕ(x) ≈ ϕ(x)

⟨wi, ϕ(x)⟩ ≈ ⟨wi, ATϕ(x)⟩ = ⟨A wi, ϕ(x)⟩

Neurons are random samples from some fixed distribution
expressed in the random basis of its input activations

4 / 10



Comparing second layer weights

min
A

T
A=Id

Ex

[
∥A ϕ(x) − ϕ(x)∥2

]
A ϕ(x) ≈ ϕ(x)

⟨wi, ϕ(x)⟩ ≈ ⟨wi, ATϕ(x)⟩ = ⟨A wi, ϕ(x)⟩

Neurons are random samples from some fixed distribution
expressed in the random basis of its input activations

4 / 10



Comparing second layer weights

min
A

T
A=Id

Ex

[
∥A ϕ(x) − ϕ(x)∥2

]
A ϕ(x) ≈ ϕ(x)

⟨wi, ϕ(x)⟩ ≈ ⟨wi, ATϕ(x)⟩ = ⟨A wi, ϕ(x)⟩

Neurons are random samples from some fixed distribution
expressed in the random basis of its input activations

4 / 10



Comparing aligned activations and weights

5 / 10



Comparing aligned activations and weights

5 / 10



Comparing aligned activations and weights

5 / 10



Comparing aligned activations and weights

5 / 10



Summary

In the infinite-width limit, there is a unique deterministic
network and finite-width networks can be seen as random
feature discretizations of it.

6 / 10



Summary

In the infinite-width limit, there is a unique deterministic
network and finite-width networks can be seen as random
feature discretizations of it.

6 / 10



The rainbow model of trained network weights

Model parameters: weight distributions πℓ and representations ϕ∞
ℓ

Iterative sampling procedure: assume ϕℓ has been defined

Theorem: ∀ℓ, Aℓ ϕℓ → ϕ∞
ℓ polynomially in the widths.

Assumptions: πℓ has finite fourth-order moments + capacity conditions at each layer.

7 / 10



The rainbow model of trained network weights

Model parameters: weight distributions πℓ and representations ϕ∞
ℓ

Iterative sampling procedure: assume ϕℓ has been defined

Theorem: ∀ℓ, Aℓ ϕℓ → ϕ∞
ℓ polynomially in the widths.

Assumptions: πℓ has finite fourth-order moments + capacity conditions at each layer.

7 / 10



The rainbow model of trained network weights

Model parameters: weight distributions πℓ and representations ϕ∞
ℓ

Iterative sampling procedure: assume ϕℓ has been defined

Theorem: ∀ℓ, Aℓ ϕℓ → ϕ∞
ℓ polynomially in the widths.

Assumptions: πℓ has finite fourth-order moments + capacity conditions at each layer.

7 / 10



The rainbow model of trained network weights

Model parameters: weight distributions πℓ and representations ϕ∞
ℓ

Iterative sampling procedure: assume ϕℓ has been defined

Theorem: ∀ℓ, Aℓ ϕℓ → ϕ∞
ℓ polynomially in the widths.

Assumptions: πℓ has finite fourth-order moments + capacity conditions at each layer.

7 / 10



The rainbow model of trained network weights

Model parameters: weight distributions πℓ and representations ϕ∞
ℓ

Iterative sampling procedure: assume ϕℓ has been defined

Theorem: ∀ℓ, Aℓ ϕℓ → ϕ∞
ℓ polynomially in the widths.

Assumptions: πℓ has finite fourth-order moments + capacity conditions at each layer.

7 / 10



A simpler model: Gaussian rainbow networks

Model fully specified by weight covariances Cℓ at each layer

▶ Sample w1,i ∼ N (0, C1)
▶ Compute A1 by aligning ϕ1 to ϕ∞

1

▶ Sample w2,i ∼ N
(
0, AT

1 C2A1
)

▶ . . .

8 / 10



A simpler model: Gaussian rainbow networks

Model fully specified by weight covariances Cℓ at each layer

▶ Sample w1,i ∼ N (0, C1)
▶ Compute A1 by aligning ϕ1 to ϕ∞

1

▶ Sample w2,i ∼ N
(
0, AT

1 C2A1
)

▶ . . .

8 / 10



Evaluating the accuracy of rainbow networks

▶ Train a scattering network on CIFAR-10 (fixed spatial filters
+ learned channel weights) (Guth, Zarka, and Mallat, 2022)

▶ Extract channel covariances Cℓ at each layer
▶ Generate random weights with the same aligned covariances
▶ Evaluate accuracy on test set!

9 / 10



Evaluating the accuracy of rainbow networks

▶ Train a scattering network on CIFAR-10 (fixed spatial filters
+ learned channel weights) (Guth, Zarka, and Mallat, 2022)

▶ Extract channel covariances Cℓ at each layer
▶ Generate random weights with the same aligned covariances
▶ Evaluate accuracy on test set!

9 / 10



Training dynamics

1 100 200 300 400 500

Ĉj PCA rank r

100

2× 100

3× 100

4× 100

6× 100

A
m

p
li
fi

ca
ti

on
a
r
(t

)

1 100 200 300 400 500

Ĉj PCA rank r

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

si
m

il
ar

it
y
c r

(t
)

Epoch t = 0

Epoch t = 1

Epoch t = 2

Epoch t = 5

Epoch t = 10

Epoch t = 20

−1 0 1

Ĉj PCA direction 1

−1

0

1

Ĉ
j

P
C

A
d

ir
ec

ti
on

2

−1 0 1

Ĉj PCA direction 1

−1

0

1

Ĉ
j

P
C

A
d

ir
ec

ti
on

10
0

−1 0 1

Ĉj PCA direction 100

−1

0

1

Ĉ
j

P
C

A
d

ir
ec

ti
on

10
1

10 / 10



Conclusion

▶ What has been learned? Weight
distributions, sometimes just covariances

▶ How do they depend on the training data?
▶ Trained networks (and real-world datasets)

as objects of scientific study
▶ Opens many questions in optimization

(regime of validity of the model?) and
generalization (properties of rainbow
kernels?)

https://arxiv.org/abs/2305.18512
https://bonnerlab.github.io/ccn-tutorial/pages/analyzing_neural_networks.html

https://arxiv.org/abs/2305.18512
https://bonnerlab.github.io/ccn-tutorial/pages/analyzing_neural_networks.html

