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What has the network learned?

Every time we train a network, we get a different set of weights
because of the random initialization

▶ What is random and what is stable across different training
runs?

▶ What is the distribution of trained network weights?
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Comparing first layer weights
Feature dim 1

Feature dim 2

Mean-field (infinite-width) limit 1
n

n∑
i=1

δwi
−−−→
n→∞

π

(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)

Neurons are random samples from some fixed distribution
(random features)
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Comparing first layer activations

Random feature activations: ϕ(x) = n−1/2(σ(⟨wi, x⟩))i≤n with
wi ∼ π i.i.d.

⟨ϕ(x), ϕ(x′)⟩ = 1
n

n∑
i=1

σ(⟨wi, x⟩) σ(⟨wi, x′⟩) → Ew∼π

[
σ(⟨w, x⟩) σ(⟨w, x′⟩)

]

Activations are equal up to rotations: they correspond to a
deterministic representation expressed in a random basis

(Rahimi and Recht, 2007; Haxby et al., 2011; Kornblith et al., 2019)
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Comparing second layer weights

min
A

T
A=Id

Ex

[
∥A ϕ(x) − ϕ(x)∥2

]
A ϕ(x) ≈ ϕ(x)

⟨wi, ϕ(x)⟩ ≈ ⟨wi, ATϕ(x)⟩ = ⟨A wi, ϕ(x)⟩

Neurons are random samples from some fixed distribution
expressed in the random basis of its input activations
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Comparing aligned activations and weights
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Summary

In the infinite-width limit, there is a unique deterministic
network and finite-width networks can be seen as random
feature discretizations of it.
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The rainbow model of trained network weights

Model parameters: weight distributions πℓ and representations ϕ∞
ℓ

Iterative sampling procedure: assume ϕℓ has been defined

Theorem: ∀ℓ, Aℓ ϕℓ → ϕ∞
ℓ polynomially in the widths.

Assumptions: πℓ has finite fourth-order moments + capacity conditions at each layer.
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A simpler model: Gaussian rainbow networks

Model fully specified by weight covariances Cℓ at each layer

▶ Sample w1,i ∼ N (0, C1)
▶ Compute A1 by aligning ϕ1 to ϕ∞

1

▶ Sample w2,i ∼ N
(
0, AT

1 C2A1
)

▶ . . .
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Evaluating the accuracy of rainbow networks

▶ Train a scattering network on CIFAR-10 (fixed spatial filters
+ learned channel weights) (Guth, Zarka, and Mallat, 2022)

▶ Extract channel covariances Cℓ at each layer
▶ Generate random weights with the same aligned covariances
▶ Evaluate accuracy on test set!
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Training dynamics
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Conclusion

▶ What has been learned? Weight
distributions, sometimes just covariances

▶ How do they depend on the training data?
▶ Trained networks (and real-world datasets)

as objects of scientific study
▶ Opens many questions in optimization

(regime of validity of the model?) and
generalization (properties of rainbow
kernels?)

https://arxiv.org/abs/2305.18512
https://bonnerlab.github.io/ccn-tutorial/pages/analyzing_neural_networks.html
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