What has my network learned? The rainbow model of deep networks

Florentin Guth

Brice Ménard

Gaspar Rochette

[O】 FLATIRON

What has the network learned?

Every time we train a network, we get a different set of weights because of the random initialization

What has the network learned?

Every time we train a network, we get a different set of weights because of the random initialization

- What is random and what is stable across different training runs?

What has the network learned?

Every time we train a network, we get a different set of weights because of the random initialization

- What is random and what is stable across different training runs?
- What is the distribution of trained network weights?

Comparing first layer weights

Comparing first layer weights

Comparing first layer weights

Number of neurons \nearrow

Comparing first layer weights

Number of neurons \nearrow
Mean-field (infinite-width) limit

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{w_{i}} \xrightarrow[n \rightarrow \infty]{ } \pi
$$

(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)

Comparing first layer weights

Number of neurons \nearrow
Mean-field (infinite-width) limit

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{w_{i}} \xrightarrow[n \rightarrow \infty]{ } \pi
$$

(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)
Neurons are random samples from some fixed distribution
(random features)

Comparing first layer activations

Random feature activations: $\phi(x)=n^{-1 / 2}\left(\sigma\left(\left\langle w_{i}, x\right\rangle\right)\right)_{i \leq n}$ with $w_{i} \sim \pi$ i.i.d.

$$
\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle=\frac{1}{n} \sum_{i=1}^{n} \sigma\left(\left\langle w_{i}, x\right\rangle\right) \sigma\left(\left\langle w_{i}, x^{\prime}\right\rangle\right) \rightarrow \mathbb{E}_{w \sim \pi}\left[\sigma(\langle w, x\rangle) \sigma\left(\left\langle w, x^{\prime}\right\rangle\right)\right]
$$

Comparing first layer activations

Random feature activations: $\phi(x)=n^{-1 / 2}\left(\sigma\left(\left\langle w_{i}, x\right\rangle\right)\right)_{i \leq n}$ with $w_{i} \sim \pi$ i.i.d.

$$
\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle=\frac{1}{n} \sum_{i=1}^{n} \sigma\left(\left\langle w_{i}, x\right\rangle\right) \sigma\left(\left\langle w_{i}, x^{\prime}\right\rangle\right) \rightarrow \mathbb{E}_{w \sim \pi}\left[\sigma(\langle w, x\rangle) \sigma\left(\left\langle w, x^{\prime}\right\rangle\right)\right]
$$

Neuron 2

Neuron 2

Comparing first layer activations

Random feature activations: $\phi(x)=n^{-1 / 2}\left(\sigma\left(\left\langle w_{i}, x\right\rangle\right)\right)_{i \leq n}$ with $w_{i} \sim \pi$ i.i.d.

$$
\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle=\frac{1}{n} \sum_{i=1}^{n} \sigma\left(\left\langle w_{i}, x\right\rangle\right) \sigma\left(\left\langle w_{i}, x^{\prime}\right\rangle\right) \rightarrow \mathbb{E}_{w \sim \pi}\left[\sigma(\langle w, x\rangle) \sigma\left(\left\langle w, x^{\prime}\right\rangle\right)\right]
$$

Neuron 2

Neuron 2

Activations are equal up to rotations: they correspond to a deterministic representation expressed in a random basis

Comparing second layer weights

Neuron 2

Neuron 2

Comparing second layer weights

Comparing second layer weights

Comparing second layer weights

Neurons are random samples from some fixed distribution expressed in the random basis of its input activations

Comparing aligned activations and weights

Comparison between activations

Comparing aligned activations and weights

Comparison between activations

Comparison between weights

Comparing aligned activations and weights

Comparison between activations
Comparison between weights

Comparing aligned activations and weights

Comparison between activations

Comparison between weights

Summary

Summary

In the infinite-width limit, there is a unique deterministic network and finite-width networks can be seen as random feature discretizations of it.

The rainbow model of trained network weights

Model parameters: weight distributions π_{ℓ} and representations ϕ_{ℓ}^{∞}
Iterative sampling procedure: assume ϕ_{ℓ} has been defined

The rainbow model of trained network weights

Model parameters: weight distributions π_{ℓ} and representations ϕ_{ℓ}^{∞}
Iterative sampling procedure: assume ϕ_{ℓ} has been defined

The rainbow model of trained network weights

Model parameters: weight distributions π_{ℓ} and representations ϕ_{ℓ}^{∞}
Iterative sampling procedure: assume ϕ_{ℓ} has been defined

The rainbow model of trained network weights

Model parameters: weight distributions π_{ℓ} and representations ϕ_{ℓ}^{∞}
Iterative sampling procedure: assume ϕ_{ℓ} has been defined

The rainbow model of trained network weights

Model parameters: weight distributions π_{ℓ} and representations ϕ_{ℓ}^{∞}
Iterative sampling procedure: assume ϕ_{ℓ} has been defined

Theorem: $\forall \ell, A_{\ell} \phi_{\ell} \rightarrow \phi_{\ell}^{\infty}$ polynomially in the widths.
Assumptions: π_{ℓ} has finite fourth-order moments + capacity conditions at each layer.

A simpler model: Gaussian rainbow networks

Model fully specified by weight covariances C_{ℓ} at each layer

- Sample $w_{1, i} \sim \mathcal{N}\left(0, C_{1}\right)$
- Compute A_{1} by aligning ϕ_{1} to ϕ_{1}^{∞}
- Sample $w_{2, i} \sim \mathcal{N}\left(0, A_{1}^{\mathrm{T}} C_{2} A_{1}\right)$

A simpler model: Gaussian rainbow networks

Model fully specified by weight covariances C_{ℓ} at each layer

- Sample $w_{1, i} \sim \mathcal{N}\left(0, C_{1}\right)$
- Compute A_{1} by aligning ϕ_{1} to ϕ_{1}^{∞}
- Sample $w_{2, i} \sim \mathcal{N}\left(0, A_{1}^{\mathrm{T}} C_{2} A_{1}\right)$
- ...

Evaluating the accuracy of rainbow networks

- Train a scattering network on CIFAR-10 (fixed spatial filters + learned channel weights) (Guth, Zarka, and Mallat, 2022)
- Extract channel covariances C_{ℓ} at each layer
- Generate random weights with the same aligned covariances
- Evaluate accuracy on test set!

Evaluating the accuracy of rainbow networks

- Train a scattering network on CIFAR-10 (fixed spatial filters + learned channel weights) (Guth, Zarka, and Mallat, 2022)
- Extract channel covariances C_{ℓ} at each layer
- Generate random weights with the same aligned covariances
- Evaluate accuracy on test set!

Training dynamics

Conclusion

- What has been learned? Weight distributions, sometimes just covariances
\triangleright How do they depend on the training data?
- Trained networks (and real-world datasets) as objects of scientific study
- Opens many questions in optimization (regime of validity of the model?) and generalization (properties of rainbow kernels?)
https://arxiv.org/abs/2305.18512
https://bonnerlab.github.io/ccn-tutorial/pages/analyzing_neural_networks.html

