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What has the network learned?

Every time we train a network, we get a different set of weights
because of the random initialization
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» What is random and what is stable across different training

runs?

» What is the distribution of trained network weights?
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Comparing first layer weights
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Comparing first layer weights

Feature dim 1 Feature dim 1
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(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)
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(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)

Neurons are random samples from some fixed distribution

(random features)
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Comparing first layer activations

Random feature activations: ¢(z) = n_l/z(a((u;i,@))ign with

w; ~ 7 ii.d.

((z), p(2))) =
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(Rahimi and Recht, 2007; Haxby et al., 2011; Kornblith et al., 2019)
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Comparing first layer activations
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Comparing first layer activations

Random feature activations: ¢(z) = n_l/z(a((wi,@))ign with

w; ~ 7 ii.d.

n

Activations are equal up to rotations: they correspond to a
deterministic representation expressed in a random basis

(Rahimi and Recht, 2007; Haxby et al., 2011; Kornblith et al., 2019)
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Comparing second layer weights
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Comparing second layer weights
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Comparing second layer weights
Neuron 2
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Neurons are random samples from some fixed distribution
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expressed in the random basis of its input activations



Comparing aligned activations

Comparison between activations
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Comparing aligned activations and weights
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Comparing aligned activations and weights
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Similar?
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Similar?
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In the infinite-width limit, there is a unique deterministic

network and finite-width networks can be seen as random
feature discretizations of it.
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The rainbow model of trained network weights

Model parameters: weight distributions 77, and representations ¢,"

Iterative sampling procedure: assume ¢, has been defined
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The rainbow model of trained network weights

Model parameters: weight distributions 77, and representations ¢,"

Iterative sampling procedure: assume ¢, has been defined
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Theorem: Y/, A, ¢, — &, polynomially in the widths.

Assumptions: 7, has finite fourth-order moments + capacity conditions at each layer.
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A simpler model: Gaussian rainbow networks

Model fully specified by weight covariances ', at each layer

» Sample w; ; ~ N(0,C)

» Compute A, by aligning ¢, to o
> Sample wy ; ~ N(O, A?(['ZAl)

> ...
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A simpler model: Gaussian rainbow networks

Model fully specified by weight covariances ', at each layer

> Sample w; ~ N(0,C)

» Compute A, by aligning ¢, to 0"
» Sample ws,; ~ N(O, ATC‘ZAl)

> ...
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Evaluating the accuracy of rainbow networks

» Train a scattering network on CIFAR-10 (fixed spatial filters

+ |earned Channel We|ghts) (Guth, Zarka, and Mallat, 2022)
» Extract channel covariances (', at each layer
» Generate random weights with the same aligned covariances

» Evaluate accuracy on test set!
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Training dynamics
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Conclusion

» What has been learned? Weight
distributions, sometimes just covariances

» How do they depend on the training data?

» Trained networks (and real-world datasets)
as objects of scientific study

» Opens many questions in optimization
(regime of validity of the model?) and
generalization (properties of rainbow
kernels?)

https://arxiv.org/abs/2305.18512
https://bonnerlab.github.io/ccn-tutorial /pages/analyzing_neural__networks.html
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