Towards
a Mathematical Understanding
of Deep Convolutional
Neural Networks

Florentin Guth

i r
ENﬁﬁs PSL*

Learning from data

Image classification

1/28

Learning from data

Image classification Image generation

1/28

Learning from data

Image classification

Image generation

“cat”

Probability

“dog” e

»
Image Image

1/28

The curse of dimensionality

Images are high-dimensional: millions of degrees of freedom

2/28

The curse of dimensionality

Images are high-dimensional: millions of degrees of freedom

Curse of dimensionality: exponential number of possibilities

\

Dimensionality

2/28

The curse of dimensionality

Images are high-dimensional: millions of degrees of freedom

Curse of dimensionality: exponential number of possibilities

\

Dimensionality

How to learn in high dimensions?

2
“w " Badiid 3
cat 0 3
O
? ? 2 ?
2
. o
dog -
> - >
Image Image

2/28

Enter deep learning

3/28

Enter deep learning

Training: initialize connections randomly, iterate over the examples,
and adjust connections iteratively when making a mistake.

3/28

Enter deep learning

Training: initialize connections randomly, iterate over the examples,
and adjust connections iteratively when making a mistake.

It works!

10%

2 30%

g
z
z

%

2013 2014 2015 2016 2017 2018 2019

2020 2021 2022

3/28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for
arbitrarily complicated data. The success of deep learning shows
that our data is simple.

4/28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for

arbitrarily complicated data. The success of deep learning shows
that our data is simple.

A

- /
“dog”

»
>

>
Image Image dim 1

»
>

Image dim 2

4/28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for

arbitrarily complicated data. The success of deep learning shows
that our data is simple.

A

- /
“dog”

>
> >
Image Image dim 1

»
>

Image dim 2

What do we mean by simple?

4/28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for

arbitrarily complicated data. The success of deep learning shows
that our data is simple.

A

- /
“dog”

»

»
>

Image dim 2

>

>
>
Image Image dim 1

What do we mean by simple?
In this talk: search for mathematical structure

» In the data distribution: what are its properties?

4/28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for

arbitrarily complicated data. The success of deep learning shows
that our data is simple.

A

»
>

“cat”

Image dim 2

“dog”

»
>

>
>
Image Image dim 1

What do we mean by simple?
In this talk: search for mathematical structure
» In the data distribution: what are its properties?

» In the network computations: what are its functional blocks?

4/28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for

arbitrarily complicated data. The success of deep learning shows
that our data is simple.

A

»
>

“cat”

Image dim 2

“dog”

»
>

>
>
Image Image dim 1

What do we mean by simple?
In this talk: search for mathematical structure

» In the data distribution: what are its properties?
» In the network computations: what are its functional blocks?

» In the network weights: what has been learned?

4/28

Outline

Exploiting Structure in Image Probability Distributions

Generative modeling

We have samples xq, ..., x,, drawn independently from a
probability distribution p(x). Goal: generate new samples from

p(z)

5/28

Generative modeling

We have samples xq, ..., x,, drawn independently from a
probability distribution p(x). Goal: generate new samples from

p(z)

» Choose a parameterized family {pg(z)}

5/28

Generative modeling

We have samples xq, ..., x,, drawn independently from a
probability distribution p(x). Goal: generate new samples from

p(x)
» Choose a parameterized family {pg(z)}

» Fit the parameters 6§ to the training samples x4, ..., x,

5/28

Generative modeling

We have samples xq, ..., x,, drawn independently from a
probability distribution p(x). Goal: generate new samples from

p(x)
» Choose a parameterized family {pg(z)}

» Fit the parameters 6§ to the training samples x4, ..., x,

» Generate samples from the model py(x)

5/28

Generative modeling

We have samples xq, ..., x,, drawn independently from a
probability distribution p(x). Goal: generate new samples from

p(z)

» Choose a parameterized family {pg(z)}
» Fit the parameters 6§ to the training samples x4, ..., x,

» Generate samples from the model py(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

5/28

Generative modeling

We have samples xq, ..., x,, drawn independently from a
probability distribution p(x). Goal: generate new samples from

p(x)
» Choose a parameterized family {pg(z)}

» Fit the parameters 6§ to the training samples x4, ..., x,

» Generate samples from the model py(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

» Small number of parameters

5/28

Generative modeling

We have samples xq, ..., x,, drawn independently from a
probability distribution p(x). Goal: generate new samples from

p(x)
» Choose a parameterized family {pg(z)}

» Fit the parameters 6§ to the training samples x4, ..., x,

» Generate samples from the model py(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

» Small number of parameters

» Log-concavity

5/28

Generative modeling

We have samples xq, ..., x,, drawn independently from a
probability distribution p(x). Goal: generate new samples from

p(z)
» Choose a parameterized family {pg(z)}
» Fit the parameters 6§ to the training samples x4, ..., x,

» Generate samples from the model py(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

» Small number of parameters

» Log-concavity

N\ /

5/28

Multiscale generation

But we don't have to generate the image all at once! We can
perform iterative generation:

a — I@!l —>
T2 I

6/28

Multiscale generation

But we don't have to generate the image all at once! We can
perform iterative generation:

T1 (Marchand et al., 2022)

6/28

Multiscale generation

But we don't have to generate the image all at once! We can
perform iterative generation:

_ffl (Marchand et al., 2022)

Corresponds to a factorization of the probability distribution:

J
p(z0) = p(z5) H p(Z;|x;)
j=1

6/28

Multiscale generation

But we don't have to generate the image all at once! We can
perform iterative generation:

T1 (Marchand et al., 2022)

Corresponds to a factorization of the probability distribution:
J
p(z0) = p(z5) H p(Z;|x;)
j=1

What are the properties of these conditional distributions?
6/28

Conditional locality

A “simpler” class of image distributions: physical fields

7, Weak lensing

7/28

Conditional locality

A “simpler” class of image distributions: physical fields

%) Weak lensing

» The distribution can be written p(z) = %e_E(z) where E(x)
is an “energy” function

7/28

Conditional locality

A “simpler” class of image distributions: physical fields

%) Weak lensing

» The distribution can be written p(z) = %e_E(z) where E(x)
is an “energy” function
» If interactions are local, F(z) decomposes as a sum of local

potentials (Markov random field)

7/28

Conditional locality

A “simpler” class of image distributions: physical fields

® Weak lensing

» The distribution can be written p(z) = %e_E(z) where E(x)
is an “energy” function

» If interactions are local, F(z) decomposes as a sum of local
potentials (Markov random field)

> More generally, it is sufficient to have local conditional

interactions at each scale (Marchand et al., 2022)

7/28

Conditional locality

A “simpler” class of image distributions: physical fields

7, Weak lensing

» The distribution can be written p(z) = %e_E(z) where E(x)
is an “energy” function

» If interactions are local, F(z) decomposes as a sum of local
potentials (Markov random field)

> More generally, it is sufficient to have local conditional
interactions at each scale (Marchand et al., 2022)

» E(Z;|z;) then decomposes as a sum of local potentials

(conditional Markov random field) 7/28

Conditional log-concavity

In addition, we show that p(z,|z;) is log-concave.

8/28

Conditional log-concavity

In addition, we show that p(z;|z,) is log-concave. Motivation:

1
E(z) = §a;TKx+ U(x)

Kinetic potential

8/28

Conditional log-concavity

In addition, we show that p(z;|z,) is log-concave. Motivation:

1
E(z) = §a;TKx+ U(x)

Kinetic potential

V?E(z) = K + V?U()

8/28

Conditional log-concavity

In addition, we show that p(z;|z,) is log-concave. Motivation:

1
E(z) = §a;TKx+ U(z)
potential

kinetic

V2E(z) = K + VU ()

» Largest eigenvalues of K correspond to directions that are
“more” log-concave

8/28

Conditional log-concavity

In addition, we show that p(z;|z,) is log-concave. Motivation:

1
E(z) = §a;TKx+ U(x)

Kinetic potential

V2E(z) = K + VU ()

» Largest eigenvalues of K correspond to directions that are
“more” log-concave

» For multiscale stationary fields, these correspond to
high-frequency details

8/28

Conditional log-concavity
In addition, we show that p(z;|z,) is log-concave. Motivation:

1
E(z) = =2"Kz+ U(x)
2 ~——
Kinetic potential
V’E(z) = K + V*U(z)
» Largest eigenvalues of K correspond to directions that are

“more” log-concave
» For multiscale stationary fields, these correspond to

high-frequency details

Density

8/28

Elgénvalues of

Conditionally log-concave models

For physical fields,

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.

9/28

Conditionally log-concave models

For physical fields,

» the conditional distributions p(z;|z;) are local and
log-concave

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.

9/28

Conditionally log-concave models

For physical fields,

» the conditional distributions p(z;|z;) are local and
log-concave

» theoretical bounds on estimation and generation errors

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.

9/28

Conditionally log-concave models

For physical fields,

» the conditional distributions p(z;|z;) are local and
log-concave

» theoretical bounds on estimation and generation errors

> log-concavity enables efficient parameter estimation with score
matching

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.

9/28

Conditionally log-concave models

For physical fields,

» the conditional distributions p(z;|z;) are local and
log-concave

P theoretical bounds on estimation and generation errors

> log-concavity enables efficient parameter estimation with score
matching

Original

-
4

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.

9/28

Score-based diffusion models

What about more complex image distributions? Not expected to
be conditionally log-concave.

10/28

Score-based diffusion models

What about more complex image distributions? Not expected to
be conditionally log-concave.

Enter diffusion models:
Typar |2y ~ N (2, dt1d)
Ti_qp | Ty ~ N (2 + dt Viog py(y), dt Id)

10/28

Score-based diffusion models

What about more complex image distributions? Not expected to
be conditionally log-concave.

Enter diffusion models:
Tppar | 2 ~ N (x4, dt1d)
Ti_qp | Ty ~ N (2 + dt Viog py(y), dt Id)

Diffusion models solve the issues associated with non-log-concavity
(Song et al., 2021; Chen et al., 2022). Remaining burning question:

how do deep networks learn the score?
10/28

Conditionally local diffusion models

Benefits of combining diffusion models with multiscale approaches?

—4—+—+» Reverse diffusion
—+—+—» Conditional reverse diffusion
3 Inverse wavelet transform

G, Coste, De Bortoli, and Mallat. Wavelet score-based generative modeling. NeurlPS, 2022.
Kadkhodaie, G, Mallat, and Simoncelli. Learning multi-scale local conditional probability models of images. ICLR,
2023.
11/28

Conditionally local diffusion models

Benefits of combining diffusion models with multiscale approaches?

—4—+—+» Reverse diffusion
—+—+—» Conditional reverse diffusion
3 Inverse wavelet transform

Locality:

sl &

G, Coste, De Bortoli, and Mallat. Wavelet score-based generative modeling. NeurlPS, 2022.
Kadkhodaie, G, Mallat, and Simoncelli. Learning multi-scale local conditional probability models of images. ICLR,
2023.
11/28

Conditionally local diffusion models

Benefits of combining diffusion models with multiscale approaches?

—+—+—} > Reverse diffusion
—+—+—+P» Conditional reverse diffusion
3 Inverse wavelet transform

Locality:

sl &

G, Coste, De Bortoli, and Mallat. Wavelet score-based generative modeling. NeurlPS, 2022.
Kadkhodaie, G, Mallat, and Simoncelli

Learning multi-scale local conditional probability models of images. ICLR,
2023.

11/28

Outline

Enforcing Structure in Convolutional Network Architectures

Neural collapse

LT
Jw F

Learned representatlon
(Neural Collapse)

4

N\

Spatial resolution \, number of channels *
Separation and concentration

CNN classifiers simultaneously move spatial information into
channels and increase linear separation

Can we define a non-linear operator with these properties?

12/28

Decomposition of ReLU

RelUs can can be separated in two opposite non-linearities with an
even-odd decomposition:

13/28

Decomposition of ReLU

RelUs can can be separated in two opposite non-linearities with an
even-odd decomposition:

» Absolute value: collapses the sign, preserves the amplitude

13/28

Decomposition of RelLU

RelUs can can be separated in two opposite non-linearities with an
even-odd decomposition:

» Absolute value: collapses the sign, preserves the amplitude

» Soft-thresholding: preserves the sign, thresholds the amplitude

13/28

Concentration with soft-thresholding

”'/ k\ "’.' s':
Elp(z) |y = "dog’T——
* " Elplg)|y = "cat]]

14 /28

Concentration with soft-thresholding

Denoised estimation

Thresholding
- —>

14 /28

Separation with phase collapse

» Images have group variability: x and g - © have the same class

15/28

Separation with phase collapse

» Images have group variability: x and g - © have the same class

> Diagonalization of the group action: ¢(g - z) = e’ @ ()

15/28

Separation with phase collapse

» Images have group variability: x and g - © have the same class

» Diagonalization of the group action: (g - z) = eia(g)go(x)

» The group within-class variability is a variability in the phases
of the representation

15/28

Separation with phase collapse

» Images have group variability: x and g - © have the same class

» Diagonalization of the group action: (g - z) = eia(g)go(@

» The group within-class variability is a variability in the phases
of the representation

p(x) o ()]

2. Phase Collapse

.
1) >

15/28

Comparison between sparsity and phase collapse

Concentration with
soft-thresholding

Odd part of ReLU
Collapses small amplitudes

Concentrates additive variability
Does not separate class means

e iy

Performs denoising
Cannot be further sparsified

Separation with
complex modulus

Even part of ReLU
Collapses complex phases

Concentrates multiplicative variability
Separates class means

-*|-I'1—>"J'LI

Computes support

Can be further sparsified
16/28

Phase collapse versus sparsity: numerical results

25% 1

20% 1

15% 1

-] I I
0% -

ReLU ReLU Abs Thresh Tanh Sign
ResNet Bias-free ResNet

X

ImageNet top-5 error

o
xX

17/28

Phase collapse versus sparsity: numerical results

25% 1

£ 20% 1
2
8 15% 1
-] I I
0% -

ReLU ReLU Abs Thresh Tanh Sign
ResNet Bias-free ResNet

€]

ImageNet t

o
xX

Phase collapse is sufficient to achieve good performance,
while any non-linearity which preserves the phase is not.
Phase collapse is thus also necessary.

How far can we further constrain the network?
17/28

Diagonalizing local translations

Known source of within-class variability: local translations

18/28

Diagonalizing local translations

Known source of within-class variability: local translations

1 s

> \f I§]

Re(y) Im (1)) |9l a(y)

Small translations 7 of an image x become phase shifts:

(r-a)xpre T (zxp)
with a relative error bounded by o|7|: approximate diagonalization!

18/28

The phase collapse operator

Constrain the spatial filters with the phase collapse operator:
pPa(u) = (3% 6(2u), (|2 * P (2u)]),)

» Mathematical definition: no

\ ! E“ learning
' /] » Combines linear and

[
L
Spatial resolution \, number of channeI;/ non-linear invariants to local
Separation and concentration translations
| % (u)| . .
» All the desired properties!
;. Phase Collapse > What accuracy can we
—_

achieve with this?

19/28

Learned scattering network

» Simplified architecture with phase collapses and minimal
learning

» No learned spatial filters nor biases
» Only one learned component: channel matrices at every layer

P> Reaches ResNet-18 accuracy with only 11 layers

Zarka, G, and Mallat. Separation and concentration in deep networks. /CLR, 2021
G, Zarka, and Mallat. Phase collapse in neural networks. ICLR, 2022.

20/28

Outline

Discovering Structure in Learned Network Weights

What has the network learned?

21/28

What has the network learned?

» No unique parameterization of a network due to internal
symmetries

21/28

What has the network learned?

» No unique parameterization of a network due to internal
symmetries

» Breaking this symmetry requires randomness

21/28

What has the network learned?

» No unique parameterization of a network due to internal
symmetries

» Breaking this symmetry requires randomness

Distribution
over weights

21/28

What has the network learned?

» No unique parameterization of a network due to internal
symmetries

» Breaking this symmetry requires randomness

Distribution
over weights

What is the distribution of trained network weights?

21/28

What has the network learned?

» No unique parameterization of a network due to internal
symmetries

» Breaking this symmetry requires randomness

Distribution
over weights

What is the distribution of trained network weights?

» Many parameters: laws of large numbers
21/28

of large numbers 1: weight statistics

Feature dim 1

sature dim 2
L)

22/28

Law of large numbers 1: weight statistics

Feature dim 1 Feature dim 1

22/28

Law of large numbers 1: weight statistics

Feature dim 1 Feature dim 1

\J

Number of neurons *

Mean-field (infinite-width) limit of neural networks

(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)
22/28

Law of large numbers 2: representation geometry

JOA

U

ivity

Law of large numbers 2: representation geometry
Neuron 2 Neuron 2

T

_ {o(2)} {o(2)}
/)

s Neuron 10 500

Neuron activity

23/28

Law of large numbers 2: representation geometry
Neuron 2 Neuron 2

T

_ {o(2)} {o(2)}
/)

“*Neuron 1 %%

o s
LN o
LI A

Neuron activity

Second law of large numbers: geometry of the representation
(Rahimi and Recht, 2007)

AR

(0(@), 6(2)) = = 3 pl{wi, 2)) p{wi, @')) = Eoprr [{0, 2)) pl{0, 7))
=1

23/28

Law of large numbers 2: representation geometry
Neuron 2 Neuron 2

{6(2)} I {(2)}
Second law of large numbers: geometry of the representation
(Rahimi and Recht, 2007)

A\ /»‘,«/

N

S5,

3 oboc g
»*"“Neuron 1

=<

““Neuron 1 %304

Neuron activity

T

AR

(B(),6(2)) = =3 plw 2)) ({0, 2')) = Bupr [0, 2)) o0,))]
=1

Distance with width 4096 Distance with same width
Co —conv1 —conv5

“)) 2 & —conv2 —convb

E, . |(6(2), 6(2")) = (#(a), (2] o5 e
(Kornblith et al., 2019) zj
0.0

4 16 64 256 1024 4096 4 16 64 256 1024 4096
Width Width 23/28

Network alignment

{p(x), ()(1/)>

/

— {#(2), ¢(2"))

24 /28

Network alignment

Neuron 2

{p(x), ()(1/)>

— <()("'),(>(,z‘/)>

24 /28

Network alignment

Neuron 2

{p(x), ()(1/)>

— <()("'),(>(,z‘/)>

Define the alignment A with min v, . E, {HA o(x) — ()(’.1':)]]2]

24 /28

Network alignment

Neuron 2

(6(x), 6(z"))
— <()(,l'), (>(,1‘/)>

Define the alignment A with min ,

E,[[l46(z) — 6(x)]]
We have A = UV from the SVD of E, [()) (a)T} UsvT

T A=1d

24/28

Network alignment

Neuron 2

{p(x), (;5(51«'/)>

/

— <()(.l'),()(,l‘)>

Define the alignment A with min v, _,, {HA o(z) — o)]
We have A = UVT from the SVD of E, [m r) (: ')T} =UsvT.

Theorem: If neuron

weights are i.i.d. samples

from 7, then Ad — & in

mean square, polynomially

in the width, and

independently of the

dimension.

24/28

Network alignment

Neuron 2

{p(x), (;5(51«'/)>
N <()(,,'), ()(,I‘/)>

Define the alignment A with min v, {HA d(x) — o(z)||]

We have A = UVT from the SVD of E, [m r) (: ;)T} =Usv”
Theorem: If neuron

Welghts are i.i.d. Samples ‘ 10 Scattering-7 on CIFAR-10 ResNet-18 on ImageNet -
from 7, then A¢ — ¢ in S ~

. £ . ¢ \ -
mean square, polynomially 2 2
in the width, and T 7
independently of the - " |

Sy Ve
Width scaling Width scaling

dimension.
24/28

Mean-field limit in hidden layers

Neuron 2 Neuron 2

Yl 10,
«:Neuron 1

25/28

Mean-field limit in hidden layers

Neuron 2 Neuron 2

!

s Neuron 1

(w, p(x)) = (Aw, Ad(x)) =~ (Aw, ¢(z))

25/28

Mean-field limit in hidden layers

Neuron 2 Neuron 2

(w, p(x)) = (Aw, Ad(x)) =~ (Aw, ¢(z))

In deeper layers, we expect
a mean-field limit on the
aligned neuron weights

{Aw}

25/28

Mean-field limit in hidden layers

Neuron 2 Neuron 2

(w, p(x)) = (Aw, Ad(x)) =~ (Aw, ¢(z))

10°
In deeper layers, we expect 5
a mean-field limit on the B
aligned neuron weights £
{Aw} Sy
107"+

93 2' 2 2'—1 2'0 2'1 2'2 23

Width <caline <

%5)28

A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at
each layer

26/28

A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at

each layer
Generative model of network weights
Neuron weights w;; = A;]'T,lu,";»,i with wl;-,,l» ~ 7. Algorithm:

Sample W, = Align ¢, to = Sample W, = ---

26/28

A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at

each layer
Generative model of network weights
Neuron weights w;; = A;]'T,lu,";»,i with wl;-,,l» ~ 7. Algorithm:

Sample W, = Align ¢, to = Sample W, = ---

Theorem: Vj, A, ¢, —

in mean square,
polynomially in the widths,
and independently of the

dimension.

26/28

A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at

each layer
Generative model of network weights
Neuron weights w;; = A;]'T,lu,";»,i with wl;-,,l» ~ 7. Algorithm:

Sample W, = Align ¢, to = Sample W, = ---

92%
‘ 90% 89%
Theorem: Vj, A, ¢, — . 85%
in mean square, A
polynomially in the widths, =
and independently of the g
. . Con| —— Trained
dimension. —— Roinbow + trained casifer
-==- Rainbow
50% 2 1 0 1 2
2 27 2 2 2 2

Width scaling
26/28

Covariance and dimensionality: the rainbow model

[] White random features
Rotation Ml Colored covariances

dependence

T
0
T — f(x)
Converges to Converges to Converges to
rainbow kernel k, rainbow kernel k; rainbow kernel k

G, Ménard, Rochette, and Mallat. A rainbow in deep network black boxes. arXiv, 2023.

27/28

Conclusion

Conclusion

How can we explain the performance of deep learning?

28/28

Conclusion

How can we explain the performance of deep learning?

» A multiscale factorization of image distributions can reveal
log-concavity or locality properties

28/28

Conclusion

How can we explain the performance of deep learning?

» A multiscale factorization of image distributions can reveal
log-concavity or locality properties

> CNNs rely on phase collapses to separate image classes

28/28

Conclusion

How can we explain the performance of deep learning?

» A multiscale factorization of image distributions can reveal
log-concavity or locality properties
> CNNs rely on phase collapses to separate image classes

» The trained weights compute colored random projections
whose distribution is aligned to the input representation

28/28

Conclusion

How can we explain the performance of deep learning?

» A multiscale factorization of image distributions can reveal
log-concavity or locality properties
> CNNs rely on phase collapses to separate image classes

» The trained weights compute colored random projections
whose distribution is aligned to the input representation

Further research:

28/28

Conclusion

How can we explain the performance of deep learning?

» A multiscale factorization of image distributions can reveal
log-concavity or locality properties
> CNNs rely on phase collapses to separate image classes

» The trained weights compute colored random projections
whose distribution is aligned to the input representation

Further research:

» Why and how do score networks generalize?

28/28

Conclusion

How can we explain the performance of deep learning?

» A multiscale factorization of image distributions can reveal
log-concavity or locality properties
> CNNs rely on phase collapses to separate image classes

» The trained weights compute colored random projections
whose distribution is aligned to the input representation

Further research:

» Why and how do score networks generalize?

» How to understand the role of depth?

28/28

Thank you!

	Exploiting Structure in Image Probability Distributions
	Enforcing Structure in Convolutional Network Architectures
	Discovering Structure in Learned Network Weights
	Conclusion

