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Searching for simplicity

The curse of dimensionality is a worst-case observation, for
arbitrarily complicated data. The success of deep learning shows
that our data is simple.
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What do we mean by simple?
In this talk: search for mathematical structure

» In the data distribution: what are its properties?
» In the network computations: what are its functional blocks?

» In the network weights: what has been learned?
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Multiscale generation

But we don't have to generate the image all at once! We can
perform iterative generation:

a — I@!l —>
T2 I

6/28



Multiscale generation

But we don't have to generate the image all at once! We can
perform iterative generation:

T1 (Marchand et al., 2022)

6/28



Multiscale generation

But we don't have to generate the image all at once! We can
perform iterative generation:

_ffl (Marchand et al., 2022)

Corresponds to a factorization of the probability distribution:

J
p(z0) = p(z5) H p(Z;|x;)
j=1

6/28



Multiscale generation

But we don't have to generate the image all at once! We can
perform iterative generation:

T1 (Marchand et al., 2022)

Corresponds to a factorization of the probability distribution:
J
p(z0) = p(z5) H p(Z;|x;)
j=1

What are the properties of these conditional distributions?
6/28
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Conditional locality

A “simpler” class of image distributions: physical fields

7, Weak lensing

» The distribution can be written p(z) = %e_E(z) where E(x)
is an “energy” function

» If interactions are local, F(z) decomposes as a sum of local
potentials (Markov random field)

> More generally, it is sufficient to have local conditional
interactions at each scale (Marchand et al., 2022)

» E(Z;|z;) then decomposes as a sum of local potentials

(conditional Markov random field) 7/28
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Conditional log-concavity
In addition, we show that p(z;|z,) is log-concave. Motivation:

1
E(z) = =2"Kz+ U(x)
2 ~——
Kinetic potential
V’E(z) = K + V*U(z)
» Largest eigenvalues of K correspond to directions that are

“more” log-concave
» For multiscale stationary fields, these correspond to

high-frequency details

Density

8/28

Elgénvalues of



Conditionally log-concave models

For physical fields,

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.
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Conditionally log-concave models

For physical fields,

» the conditional distributions p(z;|z;) are local and
log-concave

P theoretical bounds on estimation and generation errors

> log-concavity enables efficient parameter estimation with score
matching

Original

-
4

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.
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Score-based diffusion models

What about more complex image distributions? Not expected to
be conditionally log-concave.

Enter diffusion models:
Tppar | 2 ~ N (x4, dt1d)
Ti_qp | Ty ~ N (2 + dt Viog py(y), dt Id)

Diffusion models solve the issues associated with non-log-concavity
(Song et al., 2021; Chen et al., 2022). Remaining burning question:

how do deep networks learn the score?
10/28



Conditionally local diffusion models

Benefits of combining diffusion models with multiscale approaches?

—4—+—+» Reverse diffusion
—+—+—» Conditional reverse diffusion
3 Inverse wavelet transform

G, Coste, De Bortoli, and Mallat. Wavelet score-based generative modeling. NeurlPS, 2022.
Kadkhodaie, G, Mallat, and Simoncelli. Learning multi-scale local conditional probability models of images. ICLR,
2023.
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G, Coste, De Bortoli, and Mallat. Wavelet score-based generative modeling. NeurlPS, 2022.
Kadkhodaie, G, Mallat, and Simoncelli

Learning multi-scale local conditional probability models of images. ICLR,
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Enforcing Structure in Convolutional Network Architectures



Neural collapse

LT
Jw F

Learned representatlon
(Neural Collapse)

4

N\

Spatial resolution \, number of channels *
Separation and concentration

CNN classifiers simultaneously move spatial information into
channels and increase linear separation

Can we define a non-linear operator with these properties?
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Decomposition of RelLU

RelUs can can be separated in two opposite non-linearities with an
even-odd decomposition:

» Absolute value: collapses the sign, preserves the amplitude

» Soft-thresholding: preserves the sign, thresholds the amplitude
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Concentration with soft-thresholding
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Concentration with soft-thresholding

Denoised estimation

Thresholding
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Separation with phase collapse

» Images have group variability: x and g - © have the same class

» Diagonalization of the group action: (g - z) = eia(g)go(@

» The group within-class variability is a variability in the phases
of the representation

p(x) o ()]

2. Phase Collapse

.
1) >
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Comparison between sparsity and phase collapse

Concentration with
soft-thresholding

Odd part of ReLU
Collapses small amplitudes

Concentrates additive variability
Does not separate class means

e iy

Performs denoising
Cannot be further sparsified

Separation with
complex modulus

Even part of ReLU
Collapses complex phases

Concentrates multiplicative variability
Separates class means

-*|-I'1—>"J'LI

Computes support

Can be further sparsified
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Phase collapse versus sparsity: numerical results
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Phase collapse versus sparsity: numerical results
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Phase collapse is sufficient to achieve good performance,
while any non-linearity which preserves the phase is not.
Phase collapse is thus also necessary.

How far can we further constrain the network?
17/28



Diagonalizing local translations

Known source of within-class variability: local translations
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Diagonalizing local translations

Known source of within-class variability: local translations

1 s

> \f I§]

Re(y) Im (1)) |9l a(y)

Small translations 7 of an image x become phase shifts:

(r-a)xpre T (zxp)
with a relative error bounded by o|7|: approximate diagonalization!
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The phase collapse operator

Constrain the spatial filters with the phase collapse operator:
pPa(u) = (3% 6(2u), (|2 * P (2u)]),)

» Mathematical definition: no

\ ! E“ learning
' /] » Combines linear and

[
L
Spatial resolution \, number of channeI;/ non-linear invariants to local
Separation and concentration translations
| % (u)| . .
» All the desired properties!
;. Phase Collapse > What accuracy can we
—_

achieve with this?
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Learned scattering network

» Simplified architecture with phase collapses and minimal
learning

» No learned spatial filters nor biases
» Only one learned component: channel matrices at every layer

P> Reaches ResNet-18 accuracy with only 11 layers

Zarka, G, and Mallat. Separation and concentration in deep networks. /CLR, 2021
G, Zarka, and Mallat. Phase collapse in neural networks. ICLR, 2022.
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Discovering Structure in Learned Network Weights



What has the network learned?
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What has the network learned?

» No unique parameterization of a network due to internal
symmetries

» Breaking this symmetry requires randomness

Distribution
over weights

What is the distribution of trained network weights?

» Many parameters: laws of large numbers
21/28



of large numbers 1: weight statistics

Feature dim 1

sature dim 2
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Law of large numbers 1: weight statistics

Feature dim 1 Feature dim 1

\J

Number of neurons *

Mean-field (infinite-width) limit of neural networks

(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)
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Law of large numbers 2: representation geometry

JOA

U

ivity




Law of large numbers 2: representation geometry
Neuron 2 Neuron 2
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Law of large numbers 2: representation geometry
Neuron 2 Neuron 2

T
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“*Neuron 1 %%

o s
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Neuron activity

Second law of large numbers: geometry of the representation
(Rahimi and Recht, 2007)
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Law of large numbers 2: representation geometry
Neuron 2 Neuron 2

{6(2)} I {(2)}
Second law of large numbers: geometry of the representation
(Rahimi and Recht, 2007)
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Neuron activity
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Distance with width 4096 Distance with same width
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(Kornblith et al., 2019) zj
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Network alignment
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Network alignment

Neuron 2

(6(x), 6(z"))
— <()(,l'), (>(,1‘/)>

Define the alignment A with min ,

E,[[l46(z) — 6(x)] ]
We have A = UV from the SVD of E, [() ) (a )T} UsvT

T A=1d
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Network alignment

Neuron 2

{p(x), (;5(51«'/)>

/
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Define the alignment A with min v, _,, {HA o(z) — o) ]
We have A = UVT from the SVD of E, [m r) (: ')T} =UsvT.

Theorem: If neuron

weights are i.i.d. samples

from 7, then Ad — & in

mean square, polynomially

in the width, and

independently of the

dimension.
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Network alignment

Neuron 2

{p(x), (;5(51«'/)>
N <()(,,'), ()(,I‘/)>

Define the alignment A with min v, {HA d(x) — o(z)|| ]

We have A = UVT from the SVD of E, [m r) (: ;)T} =Usv”
Theorem: If neuron

Welghts are i.i.d. Samples ‘ 10 Scattering-7 on CIFAR-10 ResNet-18 on ImageNet -
from 7, then A¢ — ¢ in S ~

. £ . ¢ \ -
mean square, polynomially 2 2
in the width, and T 7
independently of the - " |

Sy Ve
Width scaling Width scaling

dimension.
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Mean-field limit in hidden layers
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Neuron 2 Neuron 2
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In deeper layers, we expect
a mean-field limit on the
aligned neuron weights
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Mean-field limit in hidden layers

Neuron 2 Neuron 2

(w, p(x)) = (Aw, Ad(x)) =~ (Aw, ¢(z))

10°
In deeper layers, we expect 5
a mean-field limit on the B
aligned neuron weights £
{Aw} Sy
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A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at
each layer

26/28



A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at

each layer
Generative model of network weights
Neuron weights w;; = A;]'T,lu,";»,i with wl;-,,l» ~ 7. Algorithm:

Sample W, = Align ¢, to = Sample W, = ---

26/28



A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at

each layer
Generative model of network weights
Neuron weights w;; = A;]'T,lu,";»,i with wl;-,,l» ~ 7. Algorithm:

Sample W, = Align ¢, to = Sample W, = ---

Theorem: Vj, A, ¢, —

in mean square,
polynomially in the widths,
and independently of the

dimension.

26/28



A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at

each layer
Generative model of network weights
Neuron weights w;; = A;]'T,lu,";»,i with wl;-,,l» ~ 7. Algorithm:

Sample W, = Align ¢, to = Sample W, = ---

92%
‘ 90% 89%
Theorem: Vj, A, ¢, — . 85%
in mean square, A
polynomially in the widths, =
and independently of the g
. . Con| —— Trained
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Covariance and dimensionality: the rainbow model

[] White random features
Rotation Ml Colored covariances

dependence

T
0
T — f(x)
Converges to Converges to Converges to
rainbow kernel k, rainbow kernel k; rainbow kernel k

G, Ménard, Rochette, and Mallat. A rainbow in deep network black boxes. arXiv, 2023.
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Conclusion

How can we explain the performance of deep learning?

» A multiscale factorization of image distributions can reveal
log-concavity or locality properties
> CNNs rely on phase collapses to separate image classes

» The trained weights compute colored random projections
whose distribution is aligned to the input representation

Further research:

» Why and how do score networks generalize?

» How to understand the role of depth?

28/28



Thank you!
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