Towards

a Mathematical Understanding
 of Deep Convolutional Neural Networks

Florentin Guth

Learning from data

Image classification

Learning from data

Image classification

Image generation

Learning from data

Image classification

Image generation

The curse of dimensionality

Images are high-dimensional: millions of degrees of freedom

The curse of dimensionality

Images are high-dimensional: millions of degrees of freedom
Curse of dimensionality: exponential number of possibilities

The curse of dimensionality

Images are high-dimensional: millions of degrees of freedom
Curse of dimensionality: exponential number of possibilities

How to learn in high dimensions?

Enter deep learning

Enter deep learning

Training: initialize connections randomly, iterate over the examples, and adjust connections iteratively when making a mistake.

Enter deep learning

Training: initialize connections randomly, iterate over the examples, and adjust connections iteratively when making a mistake.

It works!

Searching for simplicity

The curse of dimensionality is a worst-case observation, for arbitrarily complicated data. The success of deep learning shows that our data is simple.

Searching for simplicity

The curse of dimensionality is a worst-case observation, for arbitrarily complicated data. The success of deep learning shows that our data is simple.

Searching for simplicity

The curse of dimensionality is a worst-case observation, for arbitrarily complicated data. The success of deep learning shows that our data is simple.

What do we mean by simple?

Searching for simplicity

The curse of dimensionality is a worst-case observation, for arbitrarily complicated data. The success of deep learning shows that our data is simple.

What do we mean by simple?
In this talk: search for mathematical structure

- In the data distribution: what are its properties?

Searching for simplicity

The curse of dimensionality is a worst-case observation, for arbitrarily complicated data. The success of deep learning shows that our data is simple.

What do we mean by simple?
In this talk: search for mathematical structure

- In the data distribution: what are its properties?
- In the network computations: what are its functional blocks?

Searching for simplicity

The curse of dimensionality is a worst-case observation, for arbitrarily complicated data. The success of deep learning shows that our data is simple.

What do we mean by simple?
In this talk: search for mathematical structure

- In the data distribution: what are its properties?
- In the network computations: what are its functional blocks?
- In the network weights: what has been learned?

Outline

Exploiting Structure in Image Probability Distributions

Enforcing Structure in Convolutional Network Architectures

Discovering Structure in Learned Network Weights

Generative modeling

We have samples x_{1}, \ldots, x_{n} drawn independently from a probability distribution $p(x)$. Goal: generate new samples from $p(x)$

Generative modeling

We have samples x_{1}, \ldots, x_{n} drawn independently from a probability distribution $p(x)$. Goal: generate new samples from $p(x)$

- Choose a parameterized family $\left\{p_{\theta}(x)\right\}$

Generative modeling

We have samples x_{1}, \ldots, x_{n} drawn independently from a probability distribution $p(x)$. Goal: generate new samples from $p(x)$

- Choose a parameterized family $\left\{p_{\theta}(x)\right\}$
- Fit the parameters θ to the training samples x_{1}, \ldots, x_{n}

Generative modeling

We have samples x_{1}, \ldots, x_{n} drawn independently from a probability distribution $p(x)$. Goal: generate new samples from $p(x)$

- Choose a parameterized family $\left\{p_{\theta}(x)\right\}$
- Fit the parameters θ to the training samples x_{1}, \ldots, x_{n}
- Generate samples from the model $p_{\theta}(x)$

Generative modeling

We have samples x_{1}, \ldots, x_{n} drawn independently from a probability distribution $p(x)$. Goal: generate new samples from $p(x)$

- Choose a parameterized family $\left\{p_{\theta}(x)\right\}$
- Fit the parameters θ to the training samples x_{1}, \ldots, x_{n}
- Generate samples from the model $p_{\theta}(x)$

Each step introduces errors! What kind of assumptions allow controlling them in high-dimensions?

Generative modeling

We have samples x_{1}, \ldots, x_{n} drawn independently from a probability distribution $p(x)$. Goal: generate new samples from $p(x)$

- Choose a parameterized family $\left\{p_{\theta}(x)\right\}$
- Fit the parameters θ to the training samples x_{1}, \ldots, x_{n}
- Generate samples from the model $p_{\theta}(x)$

Each step introduces errors! What kind of assumptions allow controlling them in high-dimensions?

- Small number of parameters

Generative modeling

We have samples x_{1}, \ldots, x_{n} drawn independently from a probability distribution $p(x)$. Goal: generate new samples from $p(x)$

- Choose a parameterized family $\left\{p_{\theta}(x)\right\}$
- Fit the parameters θ to the training samples x_{1}, \ldots, x_{n}
- Generate samples from the model $p_{\theta}(x)$

Each step introduces errors! What kind of assumptions allow controlling them in high-dimensions?

- Small number of parameters
- Log-concavity

Generative modeling

We have samples x_{1}, \ldots, x_{n} drawn independently from a probability distribution $p(x)$. Goal: generate new samples from $p(x)$

- Choose a parameterized family $\left\{p_{\theta}(x)\right\}$
- Fit the parameters θ to the training samples x_{1}, \ldots, x_{n}
- Generate samples from the model $p_{\theta}(x)$

Each step introduces errors! What kind of assumptions allow controlling them in high-dimensions?

- Small number of parameters
- Log-concavity

Multiscale generation

But we don't have to generate the image all at once! We can perform iterative generation:

Multiscale generation

But we don't have to generate the image all at once! We can perform iterative generation:

Multiscale generation

But we don't have to generate the image all at once! We can perform iterative generation:

Corresponds to a factorization of the probability distribution:

$$
p\left(x_{0}\right)=p\left(x_{J}\right) \prod_{j=1}^{J} p\left(\bar{x}_{j} \mid x_{j}\right)
$$

Multiscale generation

But we don't have to generate the image all at once! We can perform iterative generation:

Corresponds to a factorization of the probability distribution:

$$
p\left(x_{0}\right)=p\left(x_{J}\right) \prod_{j=1}^{J} p\left(\bar{x}_{j} \mid x_{j}\right)
$$

What are the properties of these conditional distributions?

Conditional locality

A "simpler" class of image distributions: physical fields

φ^{4}

Weak lensing

Conditional locality

A "simpler" class of image distributions: physical fields

Weak lensing

- The distribution can be written $p(x)=\frac{1}{Z} \mathrm{e}^{-E(x)}$ where $E(x)$ is an "energy" function

Conditional locality

A "simpler" class of image distributions: physical fields

φ^{4}

Weak lensing

- The distribution can be written $p(x)=\frac{1}{Z} \mathrm{e}^{-E(x)}$ where $E(x)$ is an "energy" function
- If interactions are local, $E(x)$ decomposes as a sum of local potentials (Markov random field)

Conditional locality

A "simpler" class of image distributions: physical fields

φ^{4}

Weak lensing

- The distribution can be written $p(x)=\frac{1}{Z} \mathrm{e}^{-E(x)}$ where $E(x)$ is an "energy" function
- If interactions are local, $E(x)$ decomposes as a sum of local potentials (Markov random field)
- More generally, it is sufficient to have local conditional interactions at each scale (Marchand et al., 2022)

Conditional locality

A "simpler" class of image distributions: physical fields

φ^{4}

Weak lensing

- The distribution can be written $p(x)=\frac{1}{Z} \mathrm{e}^{-E(x)}$ where $E(x)$ is an "energy" function
- If interactions are local, $E(x)$ decomposes as a sum of local potentials (Markov random field)
- More generally, it is sufficient to have local conditional interactions at each scale (Marchand et al., 2022)
- $E\left(\bar{x}_{j} \mid x_{j}\right)$ then decomposes as a sum of local potentials (conditional Markov random field)

Conditional log-concavity

In addition, we show that $p\left(\bar{x}_{j} \mid x_{j}\right)$ is log-concave.

Conditional log-concavity

In addition, we show that $p\left(\bar{x}_{j} \mid x_{j}\right)$ is log-concave. Motivation:

$$
E(x)=\underbrace{\frac{1}{2} x^{\mathrm{T}} K x}_{\text {kinetic }}+\underbrace{U(x)}_{\text {potential }}
$$

Conditional log-concavity

In addition, we show that $p\left(\bar{x}_{j} \mid x_{j}\right)$ is log-concave. Motivation:

$$
\begin{aligned}
E(x) & =\underbrace{\frac{1}{2} x^{\mathrm{T}} K x}_{\text {kinetic }}+\underbrace{U(x)}_{\text {potential }} \\
\nabla^{2} E(x) & =K+\nabla^{2} U(x)
\end{aligned}
$$

Conditional log-concavity

In addition, we show that $p\left(\bar{x}_{j} \mid x_{j}\right)$ is log-concave. Motivation:

$$
\begin{aligned}
E(x) & =\underbrace{\frac{1}{2} x^{\mathrm{T}} K x}_{\text {kinetic }}+\underbrace{U(x)}_{\text {potential }} \\
\nabla^{2} E(x) & =K+\nabla^{2} U(x)
\end{aligned}
$$

- Largest eigenvalues of K correspond to directions that are "more" log-concave

Conditional log-concavity

In addition, we show that $p\left(\bar{x}_{j} \mid x_{j}\right)$ is log-concave. Motivation:

$$
\begin{aligned}
E(x) & =\underbrace{\frac{1}{2} x^{\mathrm{T}} K x}_{\text {kinetic }}+\underbrace{U(x)}_{\text {potential }} \\
\nabla^{2} E(x) & =K+\nabla^{2} U(x)
\end{aligned}
$$

- Largest eigenvalues of K correspond to directions that are "more" log-concave
- For multiscale stationary fields, these correspond to high-frequency details

Conditional log-concavity

In addition, we show that $p\left(\bar{x}_{j} \mid x_{j}\right)$ is log-concave. Motivation:

$$
\begin{aligned}
E(x) & =\underbrace{\frac{1}{2} x^{\mathrm{T}} K x}_{\text {kinetic }}+\underbrace{U(x)}_{\text {potential }} \\
\nabla^{2} E(x) & =K+\nabla^{2} U(x)
\end{aligned}
$$

- Largest eigenvalues of K correspond to directions that are "more" log-concave
- For multiscale stationary fields, these correspond to high-frequency details

Conditionally log-concave models

For physical fields,

Conditionally log-concave models

For physical fields,

- the conditional distributions $p\left(\bar{x}_{j} \mid x_{j}\right)$ are local and log-concave

Conditionally log-concave models

For physical fields,

- the conditional distributions $p\left(\bar{x}_{j} \mid x_{j}\right)$ are local and log-concave
- theoretical bounds on estimation and generation errors

Conditionally log-concave models

For physical fields,

- the conditional distributions $p\left(\bar{x}_{j} \mid x_{j}\right)$ are local and log-concave
- theoretical bounds on estimation and generation errors
- log-concavity enables efficient parameter estimation with score matching

Conditionally log-concave models

For physical fields,

- the conditional distributions $p\left(\bar{x}_{j} \mid x_{j}\right)$ are local and log-concave
- theoretical bounds on estimation and generation errors
- log-concavity enables efficient parameter estimation with score matching

Original

Synthesis

Score-based diffusion models

What about more complex image distributions? Not expected to be conditionally log-concave.

Score-based diffusion models

What about more complex image distributions? Not expected to be conditionally log-concave.

Enter diffusion models:

$$
\begin{aligned}
& x_{t+\mathrm{d} t} \mid x_{t} \sim \mathcal{N}\left(x_{t}, \mathrm{~d} t \mathrm{Id}\right) \\
& x_{t-\mathrm{d} t} \mid x_{t} \sim \mathcal{N}\left(x_{t}+\mathrm{d} t \nabla \log p_{t}\left(x_{t}\right), \mathrm{d} t \mathrm{Id}\right)
\end{aligned}
$$

Score-based diffusion models

What about more complex image distributions? Not expected to be conditionally log-concave.

Enter diffusion models:

$$
\begin{aligned}
& x_{t+\mathrm{d} t} \mid x_{t} \sim \mathcal{N}\left(x_{t}, \mathrm{~d} t \mathrm{Id}\right) \\
& x_{t-\mathrm{d} t} \mid x_{t} \sim \mathcal{N}\left(x_{t}+\mathrm{d} t \nabla \log p_{t}\left(x_{t}\right), \mathrm{d} t \mathrm{Id}\right)
\end{aligned}
$$

Diffusion models solve the issues associated with non-log-concavity (Song et al., 2021; Chen et al., 2022). Remaining burning question: how do deep networks learn the score?

Conditionally local diffusion models

Benefits of combining diffusion models with multiscale approaches?

G, Coste, De Bortoli, and Mallat. Wavelet score-based generative modeling. NeurIPS, 2022.
Kadkhodaie, G, Mallat, and Simoncelli. Learning multi-scale local conditional probability models of images. ICLR, 2023.

Conditionally local diffusion models

Benefits of combining diffusion models with multiscale approaches?

Locality:

G, Coste, De Bortoli, and Mallat. Wavelet score-based generative modeling. NeurIPS, 2022.
Kadkhodaie, G, Mallat, and Simoncelli. Learning multi-scale local conditional probability models of images. ICLR, 2023.

Conditionally local diffusion models

Benefits of combining diffusion models with multiscale approaches?

Locality:
Sampling efficiency:

G, Coste, De Bortoli, and Mallat. Wavelet score-based generative modeling. NeurIPS, 2022.
Kadkhodaie, G, Mallat, and Simoncelli. Learning multi-scale local conditional probability models of images. ICLR, 2023.

Outline

Exploiting Structure in Image Probability Distributions

Enforcing Structure in Convolutional Network Architectures

Discovering Structure in Learned Network Weights

Neural collapse

CNN classifiers simultaneously move spatial information into channels and increase linear separation

Can we define a non-linear operator with these properties?

Decomposition of ReLU

ReLUs can can be separated in two opposite non-linearities with an even-odd decomposition:

Decomposition of ReLU

ReLUs can can be separated in two opposite non-linearities with an even-odd decomposition:

- Absolute value: collapses the sign, preserves the amplitude

Decomposition of ReLU

ReLUs can can be separated in two opposite non-linearities with an even-odd decomposition:

- Absolute value: collapses the sign, preserves the amplitude
- Soft-thresholding: preserves the sign, thresholds the amplitude

Concentration with soft-thresholding

Concentration with soft-thresholding

Class mean

Separation with phase collapse

- Images have group variability: x and $g \cdot x$ have the same class

Separation with phase collapse

- Images have group variability: x and $g \cdot x$ have the same class
- Diagonalization of the group action: $\varphi(g \cdot x)=\mathrm{e}^{i \alpha(g)} \varphi(x)$

Separation with phase collapse

- Images have group variability: x and $g \cdot x$ have the same class
- Diagonalization of the group action: $\varphi(g \cdot x)=\mathrm{e}^{i \alpha(g)} \varphi(x)$
- The group within-class variability is a variability in the phases of the representation

Separation with phase collapse

- Images have group variability: x and $g \cdot x$ have the same class
- Diagonalization of the group action: $\varphi(g \cdot x)=\mathrm{e}^{i \alpha(g)} \varphi(x)$
- The group within-class variability is a variability in the phases of the representation

Comparison between sparsity and phase collapse

Concentration with soft-thresholding

Odd part of ReLU
Collapses small amplitudes

Concentrates additive variability
Does not separate class means

Performs denoising
Cannot be further sparsified

Separation with complex modulus

Even part of ReLU
Collapses complex phases

Concentrates multiplicative variability Separates class means

Computes support
Can be further sparsified

Phase collapse versus sparsity: numerical results

Phase collapse versus sparsity: numerical results

Phase collapse is sufficient to achieve good performance, while any non-linearity which preserves the phase is not. Phase collapse is thus also necessary. How far can we further constrain the network?

Diagonalizing local translations

Known source of within-class variability: local translations

Diagonalizing local translations

Known source of within-class variability: local translations

Small translations τ of an image x become phase shifts:

$$
(\tau \cdot x) * \psi \approx e^{-i \xi \cdot \tau}(x * \psi)
$$

with a relative error bounded by $\sigma|\tau|$: approximate diagonalization!

The phase collapse operator

Constrain the spatial filters with the phase collapse operator:

$$
\rho P x(u)=\left(x * \phi(2 u),\left(\left|x * \psi_{\theta}(2 u)\right|\right)_{\theta}\right)
$$

Learned scattering network

- Simplified architecture with phase collapses and minimal learning
- No learned spatial filters nor biases
- Only one learned component: channel matrices at every layer
- Reaches ResNet-18 accuracy with only 11 layers

[^0]
Outline

Exploiting Structure in Image Probability Distributions

Enforcing Structure in Convolutional Network Architectures

Discovering Structure in Learned Network Weights

What has the network learned?

What has the network learned?

- No unique parameterization of a network due to internal symmetries

What has the network learned?

- No unique parameterization of a network due to internal symmetries
- Breaking this symmetry requires randomness

What has the network learned?

- No unique parameterization of a network due to internal symmetries
- Breaking this symmetry requires randomness

What has the network learned?

- No unique parameterization of a network due to internal symmetries
- Breaking this symmetry requires randomness

What is the distribution of trained network weights?

What has the network learned?

- No unique parameterization of a network due to internal symmetries
- Breaking this symmetry requires randomness

What is the distribution of trained network weights?

- Many parameters: laws of large numbers

Law of large numbers 1: weight statistics

Law of large numbers 1: weight statistics

Law of large numbers 1: weight statistics

First law of large numbers: statistics of the neuron weights

Number of neurons \nearrow
Mean-field (infinite-width) limit of neural networks

Law of large numbers 2: representation geometry

Law of large numbers 2: representation geometry

Law of large numbers 2: representation geometry

Second law of large numbers: geometry of the representation (Rahimi and Recht, 2007)

$$
\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle=\frac{1}{n} \sum_{i=1}^{n} \rho\left(\left\langle w_{i}, x\right\rangle\right) \rho\left(\left\langle w_{i}, x^{\prime}\right\rangle\right) \rightarrow \mathbb{E}_{w \sim \pi}\left[\rho(\langle w, x\rangle) \rho\left(\left\langle w, x^{\prime}\right\rangle\right)\right]
$$

Law of large numbers 2: representation geometry

Neuron 2

Neuron 2

Second law of large numbers: geometry of the representation (Rahimi and Recht, 2007)
$\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle=\frac{1}{n} \sum_{i=1}^{n} \rho\left(\left\langle w_{i}, x\right\rangle\right) \rho\left(\left\langle w_{i}, x^{\prime}\right\rangle\right) \rightarrow \mathbb{E}_{w \sim \pi}\left[\rho(\langle w, x\rangle) \rho\left(\left\langle w, x^{\prime}\right\rangle\right)\right]$
$\mathbb{E}_{x, x^{\prime}}\left[\left(\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle-\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle\right)^{2}\right]$
(Kornblith et al., 2019)

Distance with same width
$\begin{aligned} & \text { - conv1 - conv5 } \\ & - \text { conv2 - conv6 } \\ & - \text { conv3 - conv7 } \\ & - \text { conv4 - conv8 }\end{aligned}$
$23 / 28$

Network alignment

$$
\begin{aligned}
& \left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle \\
& \quad \rightarrow\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle
\end{aligned}
$$

Network alignment

$$
\begin{aligned}
& \left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle \\
& \quad \rightarrow\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle
\end{aligned}
$$

Network alignment

$$
\begin{aligned}
& \left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle \\
& \quad \rightarrow\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle
\end{aligned}
$$

Define the alignment A with $\min _{A^{\mathrm{T}} A=\mathrm{Id}} \mathbb{E}_{x}\left[\|A \phi(x)-\phi(x)\|^{2}\right]$

Network alignment

$$
\begin{aligned}
& \left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle \\
& \quad \rightarrow\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle
\end{aligned}
$$

Define the alignment A with $\min _{A^{\mathrm{T}} A=\mathrm{Id}} \mathbb{E}_{x}\left[\|A \phi(x)-\phi(x)\|^{2}\right]$ We have $A=U V^{\mathrm{T}}$ from the SVD of $\mathbb{E}_{x}\left[\phi(x) \phi(x)^{\mathrm{T}}\right]=U S V^{\mathrm{T}}$.

Network alignment

$$
\begin{aligned}
& \left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle \\
& \quad \rightarrow\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle
\end{aligned}
$$

Define the alignment A with $\min _{A^{\mathrm{T}} A=\mathrm{Id}} \mathbb{E}_{x}\left[\|A \phi(x)-\phi(x)\|^{2}\right]$ We have $A=U V^{\mathrm{T}}$ from the SVD of $\mathbb{E}_{x}\left[\phi(x) \phi(x)^{\mathrm{T}}\right]=U S V^{\mathrm{T}}$.
Theorem: If neuron
weights are i.i.d. samples
from π, then $A \phi \rightarrow \phi$ in
mean square, polynomially
in the width, and
independently of the
dimension.

Network alignment

$$
\begin{aligned}
& \left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle \\
& \quad \rightarrow\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle
\end{aligned}
$$

Define the alignment A with $\min _{A^{\mathrm{T}} A=\mathrm{Id}} \mathbb{E}_{x}\left[\|A \phi(x)-\phi(x)\|^{2}\right]$ We have $A=U V^{\mathrm{T}}$ from the SVD of $\mathbb{E}_{x}\left[\phi(x) \phi(x)^{\mathrm{T}}\right]=U S V^{\mathrm{T}}$. Theorem: If neuron weights are i.i.d. samples from π, then $A \phi \rightarrow \phi$ in mean square, polynomially in the width, and independently of the dimension.

Mean-field limit in hidden layers

Mean-field limit in hidden layers

Mean-field limit in hidden layers

$$
\langle w, \phi(x)\rangle=\langle A w, A \phi(x)\rangle \approx\langle A w, \phi(x)\rangle
$$

In deeper layers, we expect
a mean-field limit on the
aligned neuron weights
$\{A w\}$

Mean-field limit in hidden layers

$$
\langle w, \phi(x)\rangle=\langle A w, A \phi(x)\rangle \approx\langle A w, \phi(x)\rangle
$$

In deeper layers, we expect a mean-field limit on the aligned neuron weights $\{A w\}$

A probabilistic model of network weights

"Maximum-entropy" model under the mean-field constraints at each layer

A probabilistic model of network weights

"Maximum-entropy" model under the mean-field constraints at each layer

Generative model of network weights

Neuron weights $w_{j, i}=A_{j-1}^{\mathrm{T}} w_{j, i}^{\prime}$ with $w_{j, i}^{\prime} \sim \pi_{j}$. Algorithm:
Sample $W_{1} \Longrightarrow$ Align ϕ_{1} to $\phi_{1} \Longrightarrow$ Sample $W_{2} \Longrightarrow \cdots$

A probabilistic model of network weights

"Maximum-entropy" model under the mean-field constraints at each layer

Generative model of network weights

Neuron weights $w_{j, i}=A_{j-1}^{\mathrm{T}} w_{j, i}^{\prime}$ with $w_{j, i}^{\prime} \sim \pi_{j}$. Algorithm:

$$
\text { Sample } W_{1} \Longrightarrow \text { Align } \phi_{1} \text { to } \phi_{1} \Longrightarrow \text { Sample } W_{2} \Longrightarrow \cdots
$$

Theorem: $\forall j, A_{j} \phi_{j} \rightarrow \phi_{j}$
in mean square, polynomially in the widths, and independently of the dimension.

A probabilistic model of network weights

"Maximum-entropy" model under the mean-field constraints at each layer

Generative model of network weights

Neuron weights $w_{j, i}=A_{j-1}^{\mathrm{T}} w_{j, i}^{\prime}$ with $w_{j, i}^{\prime} \sim \pi_{j}$. Algorithm:

Sample $W_{1} \Longrightarrow$ Align ϕ_{1} to $\phi_{1} \Longrightarrow$ Sample $W_{2} \Longrightarrow \cdots$

Theorem: $\forall j, A_{j} \phi_{j} \rightarrow \phi_{j}$ in mean square, polynomially in the widths, and independently of the dimension.

Covariance and dimensionality: the rainbow model

G, Ménard, Rochette, and Mallat. A rainbow in deep network black boxes. arXiv, 2023.

Conclusion

Conclusion

How can we explain the performance of deep learning?

Conclusion

How can we explain the performance of deep learning?

- A multiscale factorization of image distributions can reveal log-concavity or locality properties

Conclusion

How can we explain the performance of deep learning?

- A multiscale factorization of image distributions can reveal log-concavity or locality properties
- CNNs rely on phase collapses to separate image classes

Conclusion

How can we explain the performance of deep learning?

- A multiscale factorization of image distributions can reveal log-concavity or locality properties
- CNNs rely on phase collapses to separate image classes
- The trained weights compute colored random projections whose distribution is aligned to the input representation

Conclusion

How can we explain the performance of deep learning?

- A multiscale factorization of image distributions can reveal log-concavity or locality properties
- CNNs rely on phase collapses to separate image classes
- The trained weights compute colored random projections whose distribution is aligned to the input representation

Further research:

Conclusion

How can we explain the performance of deep learning?

- A multiscale factorization of image distributions can reveal log-concavity or locality properties
- CNNs rely on phase collapses to separate image classes
- The trained weights compute colored random projections whose distribution is aligned to the input representation

Further research:

- Why and how do score networks generalize?

Conclusion

How can we explain the performance of deep learning?

- A multiscale factorization of image distributions can reveal log-concavity or locality properties
- CNNs rely on phase collapses to separate image classes
- The trained weights compute colored random projections whose distribution is aligned to the input representation

Further research:

- Why and how do score networks generalize?
- How to understand the role of depth?

Thank you!

[^0]: Zarka, G, and Mallat. Separation and concentration in deep networks. ICLR, 2021.
 G, Zarka, and Mallat. Phase collapse in neural networks. ICLR, 2022.

