
Towards
a Mathematical Understanding

of Deep Convolutional
Neural Networks

Florentin Guth

Learning from data

1 / 28

Learning from data

1 / 28

Learning from data

1 / 28

The curse of dimensionality

Images are high-dimensional: millions of degrees of freedom

Curse of dimensionality: exponential number of possibilities

How to learn in high dimensions?

2 / 28

The curse of dimensionality

Images are high-dimensional: millions of degrees of freedom

Curse of dimensionality: exponential number of possibilities

How to learn in high dimensions?

2 / 28

The curse of dimensionality

Images are high-dimensional: millions of degrees of freedom

Curse of dimensionality: exponential number of possibilities

How to learn in high dimensions?

2 / 28

Enter deep learning

Training: initialize connections randomly, iterate over the examples,
and adjust connections iteratively when making a mistake.

It works!

3 / 28

Enter deep learning

Training: initialize connections randomly, iterate over the examples,
and adjust connections iteratively when making a mistake.

It works!

3 / 28

Enter deep learning

Training: initialize connections randomly, iterate over the examples,
and adjust connections iteratively when making a mistake.

It works!

3 / 28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for
arbitrarily complicated data. The success of deep learning shows
that our data is simple.

What do we mean by simple?

In this talk: search for mathematical structure

▶ In the data distribution: what are its properties?
▶ In the network computations: what are its functional blocks?
▶ In the network weights: what has been learned?

4 / 28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for
arbitrarily complicated data. The success of deep learning shows
that our data is simple.

What do we mean by simple?

In this talk: search for mathematical structure

▶ In the data distribution: what are its properties?
▶ In the network computations: what are its functional blocks?
▶ In the network weights: what has been learned?

4 / 28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for
arbitrarily complicated data. The success of deep learning shows
that our data is simple.

What do we mean by simple?

In this talk: search for mathematical structure

▶ In the data distribution: what are its properties?
▶ In the network computations: what are its functional blocks?
▶ In the network weights: what has been learned?

4 / 28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for
arbitrarily complicated data. The success of deep learning shows
that our data is simple.

What do we mean by simple?

In this talk: search for mathematical structure

▶ In the data distribution: what are its properties?

▶ In the network computations: what are its functional blocks?
▶ In the network weights: what has been learned?

4 / 28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for
arbitrarily complicated data. The success of deep learning shows
that our data is simple.

What do we mean by simple?

In this talk: search for mathematical structure

▶ In the data distribution: what are its properties?
▶ In the network computations: what are its functional blocks?

▶ In the network weights: what has been learned?

4 / 28

Searching for simplicity

The curse of dimensionality is a worst-case observation, for
arbitrarily complicated data. The success of deep learning shows
that our data is simple.

What do we mean by simple?

In this talk: search for mathematical structure

▶ In the data distribution: what are its properties?
▶ In the network computations: what are its functional blocks?
▶ In the network weights: what has been learned?

4 / 28

Outline

Exploiting Structure in Image Probability Distributions

Enforcing Structure in Convolutional Network Architectures

Discovering Structure in Learned Network Weights

Generative modeling

We have samples x1, . . . , xn drawn independently from a
probability distribution p(x). Goal: generate new samples from
p(x)

▶ Choose a parameterized family {pθ(x)}
▶ Fit the parameters θ to the training samples x1, . . . , xn

▶ Generate samples from the model pθ(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

▶ Small number of parameters
▶ Log-concavity

5 / 28

Generative modeling

We have samples x1, . . . , xn drawn independently from a
probability distribution p(x). Goal: generate new samples from
p(x)

▶ Choose a parameterized family {pθ(x)}

▶ Fit the parameters θ to the training samples x1, . . . , xn

▶ Generate samples from the model pθ(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

▶ Small number of parameters
▶ Log-concavity

5 / 28

Generative modeling

We have samples x1, . . . , xn drawn independently from a
probability distribution p(x). Goal: generate new samples from
p(x)

▶ Choose a parameterized family {pθ(x)}
▶ Fit the parameters θ to the training samples x1, . . . , xn

▶ Generate samples from the model pθ(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

▶ Small number of parameters
▶ Log-concavity

5 / 28

Generative modeling

We have samples x1, . . . , xn drawn independently from a
probability distribution p(x). Goal: generate new samples from
p(x)

▶ Choose a parameterized family {pθ(x)}
▶ Fit the parameters θ to the training samples x1, . . . , xn

▶ Generate samples from the model pθ(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

▶ Small number of parameters
▶ Log-concavity

5 / 28

Generative modeling

We have samples x1, . . . , xn drawn independently from a
probability distribution p(x). Goal: generate new samples from
p(x)

▶ Choose a parameterized family {pθ(x)}
▶ Fit the parameters θ to the training samples x1, . . . , xn

▶ Generate samples from the model pθ(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

▶ Small number of parameters
▶ Log-concavity

5 / 28

Generative modeling

We have samples x1, . . . , xn drawn independently from a
probability distribution p(x). Goal: generate new samples from
p(x)

▶ Choose a parameterized family {pθ(x)}
▶ Fit the parameters θ to the training samples x1, . . . , xn

▶ Generate samples from the model pθ(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

▶ Small number of parameters

▶ Log-concavity

5 / 28

Generative modeling

We have samples x1, . . . , xn drawn independently from a
probability distribution p(x). Goal: generate new samples from
p(x)

▶ Choose a parameterized family {pθ(x)}
▶ Fit the parameters θ to the training samples x1, . . . , xn

▶ Generate samples from the model pθ(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

▶ Small number of parameters
▶ Log-concavity

5 / 28

Generative modeling

We have samples x1, . . . , xn drawn independently from a
probability distribution p(x). Goal: generate new samples from
p(x)

▶ Choose a parameterized family {pθ(x)}
▶ Fit the parameters θ to the training samples x1, . . . , xn

▶ Generate samples from the model pθ(x)

Each step introduces errors! What kind of assumptions allow
controlling them in high-dimensions?

▶ Small number of parameters
▶ Log-concavity

5 / 28

Multiscale generation

But we don’t have to generate the image all at once! We can
perform iterative generation:

Corresponds to a factorization of the probability distribution:

p(x0) = p(xJ)
J∏

j=1
p(x̄j |xj)

What are the properties of these conditional distributions?

6 / 28

Multiscale generation

But we don’t have to generate the image all at once! We can
perform iterative generation:

Corresponds to a factorization of the probability distribution:

p(x0) = p(xJ)
J∏

j=1
p(x̄j |xj)

What are the properties of these conditional distributions?

6 / 28

Multiscale generation

But we don’t have to generate the image all at once! We can
perform iterative generation:

Corresponds to a factorization of the probability distribution:

p(x0) = p(xJ)
J∏

j=1
p(x̄j |xj)

What are the properties of these conditional distributions?

6 / 28

Multiscale generation

But we don’t have to generate the image all at once! We can
perform iterative generation:

Corresponds to a factorization of the probability distribution:

p(x0) = p(xJ)
J∏

j=1
p(x̄j |xj)

What are the properties of these conditional distributions?
6 / 28

Conditional locality

A “simpler” class of image distributions: physical fields

▶ The distribution can be written p(x) = 1
Z e−E(x) where E(x)

is an “energy” function
▶ If interactions are local, E(x) decomposes as a sum of local

potentials (Markov random field)
▶ More generally, it is sufficient to have local conditional

interactions at each scale (Marchand et al., 2022)
▶ E(x̄j |xj) then decomposes as a sum of local potentials

(conditional Markov random field)

7 / 28

Conditional locality

A “simpler” class of image distributions: physical fields

▶ The distribution can be written p(x) = 1
Z e−E(x) where E(x)

is an “energy” function

▶ If interactions are local, E(x) decomposes as a sum of local
potentials (Markov random field)

▶ More generally, it is sufficient to have local conditional
interactions at each scale (Marchand et al., 2022)

▶ E(x̄j |xj) then decomposes as a sum of local potentials
(conditional Markov random field)

7 / 28

Conditional locality

A “simpler” class of image distributions: physical fields

▶ The distribution can be written p(x) = 1
Z e−E(x) where E(x)

is an “energy” function
▶ If interactions are local, E(x) decomposes as a sum of local

potentials (Markov random field)

▶ More generally, it is sufficient to have local conditional
interactions at each scale (Marchand et al., 2022)

▶ E(x̄j |xj) then decomposes as a sum of local potentials
(conditional Markov random field)

7 / 28

Conditional locality

A “simpler” class of image distributions: physical fields

▶ The distribution can be written p(x) = 1
Z e−E(x) where E(x)

is an “energy” function
▶ If interactions are local, E(x) decomposes as a sum of local

potentials (Markov random field)
▶ More generally, it is sufficient to have local conditional

interactions at each scale (Marchand et al., 2022)

▶ E(x̄j |xj) then decomposes as a sum of local potentials
(conditional Markov random field)

7 / 28

Conditional locality

A “simpler” class of image distributions: physical fields

▶ The distribution can be written p(x) = 1
Z e−E(x) where E(x)

is an “energy” function
▶ If interactions are local, E(x) decomposes as a sum of local

potentials (Markov random field)
▶ More generally, it is sufficient to have local conditional

interactions at each scale (Marchand et al., 2022)
▶ E(x̄j |xj) then decomposes as a sum of local potentials

(conditional Markov random field) 7 / 28

Conditional log-concavity

In addition, we show that p(x̄j |xj) is log-concave.

Motivation:

E(x) = 1
2x

TKx︸ ︷︷ ︸
kinetic

+ U(x)︸ ︷︷ ︸
potential

∇2E(x) = K + ∇2U(x)

▶ Largest eigenvalues of K correspond to directions that are
“more” log-concave

▶ For multiscale stationary fields, these correspond to
high-frequency details

8 / 28

Conditional log-concavity

In addition, we show that p(x̄j |xj) is log-concave. Motivation:

E(x) = 1
2x

TKx︸ ︷︷ ︸
kinetic

+ U(x)︸ ︷︷ ︸
potential

∇2E(x) = K + ∇2U(x)

▶ Largest eigenvalues of K correspond to directions that are
“more” log-concave

▶ For multiscale stationary fields, these correspond to
high-frequency details

8 / 28

Conditional log-concavity

In addition, we show that p(x̄j |xj) is log-concave. Motivation:

E(x) = 1
2x

TKx︸ ︷︷ ︸
kinetic

+ U(x)︸ ︷︷ ︸
potential

∇2E(x) = K + ∇2U(x)

▶ Largest eigenvalues of K correspond to directions that are
“more” log-concave

▶ For multiscale stationary fields, these correspond to
high-frequency details

8 / 28

Conditional log-concavity

In addition, we show that p(x̄j |xj) is log-concave. Motivation:

E(x) = 1
2x

TKx︸ ︷︷ ︸
kinetic

+ U(x)︸ ︷︷ ︸
potential

∇2E(x) = K + ∇2U(x)

▶ Largest eigenvalues of K correspond to directions that are
“more” log-concave

▶ For multiscale stationary fields, these correspond to
high-frequency details

8 / 28

Conditional log-concavity

In addition, we show that p(x̄j |xj) is log-concave. Motivation:

E(x) = 1
2x

TKx︸ ︷︷ ︸
kinetic

+ U(x)︸ ︷︷ ︸
potential

∇2E(x) = K + ∇2U(x)

▶ Largest eigenvalues of K correspond to directions that are
“more” log-concave

▶ For multiscale stationary fields, these correspond to
high-frequency details

8 / 28

Conditional log-concavity

In addition, we show that p(x̄j |xj) is log-concave. Motivation:

E(x) = 1
2x

TKx︸ ︷︷ ︸
kinetic

+ U(x)︸ ︷︷ ︸
potential

∇2E(x) = K + ∇2U(x)

▶ Largest eigenvalues of K correspond to directions that are
“more” log-concave

▶ For multiscale stationary fields, these correspond to
high-frequency details

8 / 28

Conditionally log-concave models

For physical fields,

▶ the conditional distributions p(x̄j |xj) are local and
log-concave

▶ theoretical bounds on estimation and generation errors
▶ log-concavity enables efficient parameter estimation with score

matching

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.
9 / 28

Conditionally log-concave models

For physical fields,

▶ the conditional distributions p(x̄j |xj) are local and
log-concave

▶ theoretical bounds on estimation and generation errors
▶ log-concavity enables efficient parameter estimation with score

matching

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.
9 / 28

Conditionally log-concave models

For physical fields,

▶ the conditional distributions p(x̄j |xj) are local and
log-concave

▶ theoretical bounds on estimation and generation errors

▶ log-concavity enables efficient parameter estimation with score
matching

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.
9 / 28

Conditionally log-concave models

For physical fields,

▶ the conditional distributions p(x̄j |xj) are local and
log-concave

▶ theoretical bounds on estimation and generation errors
▶ log-concavity enables efficient parameter estimation with score

matching

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.
9 / 28

Conditionally log-concave models

For physical fields,

▶ the conditional distributions p(x̄j |xj) are local and
log-concave

▶ theoretical bounds on estimation and generation errors
▶ log-concavity enables efficient parameter estimation with score

matching

G*, Lempereur*, Bruna, and Mallat. Conditionally strongly log-concave generative models. ICML, 2023.
9 / 28

Score-based diffusion models

What about more complex image distributions? Not expected to
be conditionally log-concave.

Enter diffusion models:

xt+dt |xt ∼ N (xt, dt Id)
xt−dt |xt ∼ N (xt + dt∇ log pt(xt),dt Id)

Diffusion models solve the issues associated with non-log-concavity
(Song et al., 2021; Chen et al., 2022). Remaining burning question:
how do deep networks learn the score?

10 / 28

Score-based diffusion models

What about more complex image distributions? Not expected to
be conditionally log-concave.

Enter diffusion models:

xt+dt |xt ∼ N (xt, dt Id)
xt−dt |xt ∼ N (xt + dt∇ log pt(xt),dt Id)

Diffusion models solve the issues associated with non-log-concavity
(Song et al., 2021; Chen et al., 2022). Remaining burning question:
how do deep networks learn the score?

10 / 28

Score-based diffusion models

What about more complex image distributions? Not expected to
be conditionally log-concave.

Enter diffusion models:

xt+dt |xt ∼ N (xt, dt Id)
xt−dt |xt ∼ N (xt + dt∇ log pt(xt),dt Id)

Diffusion models solve the issues associated with non-log-concavity
(Song et al., 2021; Chen et al., 2022). Remaining burning question:
how do deep networks learn the score?

10 / 28

Conditionally local diffusion models

Benefits of combining diffusion models with multiscale approaches?

Locality: Sampling efficiency:

G, Coste, De Bortoli, and Mallat. Wavelet score-based generative modeling. NeurIPS, 2022.
Kadkhodaie, G, Mallat, and Simoncelli. Learning multi-scale local conditional probability models of images. ICLR,
2023.

11 / 28

Conditionally local diffusion models

Benefits of combining diffusion models with multiscale approaches?

Locality:

Sampling efficiency:

G, Coste, De Bortoli, and Mallat. Wavelet score-based generative modeling. NeurIPS, 2022.
Kadkhodaie, G, Mallat, and Simoncelli. Learning multi-scale local conditional probability models of images. ICLR,
2023.

11 / 28

Conditionally local diffusion models

Benefits of combining diffusion models with multiscale approaches?

Locality: Sampling efficiency:

G, Coste, De Bortoli, and Mallat. Wavelet score-based generative modeling. NeurIPS, 2022.
Kadkhodaie, G, Mallat, and Simoncelli. Learning multi-scale local conditional probability models of images. ICLR,
2023.

11 / 28

Outline

Exploiting Structure in Image Probability Distributions

Enforcing Structure in Convolutional Network Architectures

Discovering Structure in Learned Network Weights

Neural collapse

CNN classifiers simultaneously move spatial information into
channels and increase linear separation

Can we define a non-linear operator with these properties?

12 / 28

Decomposition of ReLU

ReLUs can can be separated in two opposite non-linearities with an
even-odd decomposition:

▶ Absolute value: collapses the sign, preserves the amplitude
▶ Soft-thresholding: preserves the sign, thresholds the amplitude

13 / 28

Decomposition of ReLU

ReLUs can can be separated in two opposite non-linearities with an
even-odd decomposition:

▶ Absolute value: collapses the sign, preserves the amplitude

▶ Soft-thresholding: preserves the sign, thresholds the amplitude

13 / 28

Decomposition of ReLU

ReLUs can can be separated in two opposite non-linearities with an
even-odd decomposition:

▶ Absolute value: collapses the sign, preserves the amplitude
▶ Soft-thresholding: preserves the sign, thresholds the amplitude

13 / 28

Concentration with soft-thresholding

14 / 28

Concentration with soft-thresholding

14 / 28

Separation with phase collapse

▶ Images have group variability: x and g · x have the same class

▶ Diagonalization of the group action: φ(g · x) = eiα(g)φ(x)
▶ The group within-class variability is a variability in the phases

of the representation

15 / 28

Separation with phase collapse

▶ Images have group variability: x and g · x have the same class
▶ Diagonalization of the group action: φ(g · x) = eiα(g)φ(x)

▶ The group within-class variability is a variability in the phases
of the representation

15 / 28

Separation with phase collapse

▶ Images have group variability: x and g · x have the same class
▶ Diagonalization of the group action: φ(g · x) = eiα(g)φ(x)
▶ The group within-class variability is a variability in the phases

of the representation

15 / 28

Separation with phase collapse

▶ Images have group variability: x and g · x have the same class
▶ Diagonalization of the group action: φ(g · x) = eiα(g)φ(x)
▶ The group within-class variability is a variability in the phases

of the representation

15 / 28

Comparison between sparsity and phase collapse

16 / 28

Phase collapse versus sparsity: numerical results

Phase collapse is sufficient to achieve good performance,
while any non-linearity which preserves the phase is not.
Phase collapse is thus also necessary.

How far can we further constrain the network?

17 / 28

Phase collapse versus sparsity: numerical results

Phase collapse is sufficient to achieve good performance,
while any non-linearity which preserves the phase is not.
Phase collapse is thus also necessary.

How far can we further constrain the network?
17 / 28

Diagonalizing local translations

Known source of within-class variability: local translations

Re(ψ) Im(ψ) |ψ| α(ψ)

Small translations τ of an image x become phase shifts:

(τ · x) ∗ ψ ≈ e−iξ·τ (x ∗ ψ)

with a relative error bounded by σ|τ |: approximate diagonalization!

18 / 28

Diagonalizing local translations

Known source of within-class variability: local translations

Re(ψ) Im(ψ) |ψ| α(ψ)

Small translations τ of an image x become phase shifts:

(τ · x) ∗ ψ ≈ e−iξ·τ (x ∗ ψ)

with a relative error bounded by σ|τ |: approximate diagonalization!

18 / 28

The phase collapse operator

Constrain the spatial filters with the phase collapse operator:

ρPx(u) =
(
x ∗ ϕ(2u), (|x ∗ ψθ(2u)|)θ

)
▶ Mathematical definition: no

learning
▶ Combines linear and

non-linear invariants to local
translations

▶ All the desired properties!
▶ What accuracy can we

achieve with this?

19 / 28

Learned scattering network

▶ Simplified architecture with phase collapses and minimal
learning

▶ No learned spatial filters nor biases
▶ Only one learned component: channel matrices at every layer
▶ Reaches ResNet-18 accuracy with only 11 layers

Zarka, G, and Mallat. Separation and concentration in deep networks. ICLR, 2021.
G, Zarka, and Mallat. Phase collapse in neural networks. ICLR, 2022.

20 / 28

Outline

Exploiting Structure in Image Probability Distributions

Enforcing Structure in Convolutional Network Architectures

Discovering Structure in Learned Network Weights

What has the network learned?

▶ No unique parameterization of a network due to internal
symmetries

▶ Breaking this symmetry requires randomness

What is the distribution of trained network weights?

▶ Many parameters: laws of large numbers

21 / 28

What has the network learned?

▶ No unique parameterization of a network due to internal
symmetries

▶ Breaking this symmetry requires randomness

What is the distribution of trained network weights?

▶ Many parameters: laws of large numbers

21 / 28

What has the network learned?

▶ No unique parameterization of a network due to internal
symmetries

▶ Breaking this symmetry requires randomness

What is the distribution of trained network weights?

▶ Many parameters: laws of large numbers

21 / 28

What has the network learned?

▶ No unique parameterization of a network due to internal
symmetries

▶ Breaking this symmetry requires randomness

What is the distribution of trained network weights?

▶ Many parameters: laws of large numbers

21 / 28

What has the network learned?

▶ No unique parameterization of a network due to internal
symmetries

▶ Breaking this symmetry requires randomness

What is the distribution of trained network weights?

▶ Many parameters: laws of large numbers

21 / 28

What has the network learned?

▶ No unique parameterization of a network due to internal
symmetries

▶ Breaking this symmetry requires randomness

What is the distribution of trained network weights?

▶ Many parameters: laws of large numbers
21 / 28

Law of large numbers 1: weight statistics
Feature dim 1

Feature dim 2

First law of large numbers: statistics of the neuron weights

Mean-field (infinite-width) limit of neural networks
(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)

22 / 28

Law of large numbers 1: weight statistics
Feature dim 1

Feature dim 2

Feature dim 1

Feature dim 2

First law of large numbers: statistics of the neuron weights

Mean-field (infinite-width) limit of neural networks
(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)

22 / 28

Law of large numbers 1: weight statistics
Feature dim 1

Feature dim 2

Feature dim 1

Feature dim 2

First law of large numbers: statistics of the neuron weights

Mean-field (infinite-width) limit of neural networks
(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020)

22 / 28

Law of large numbers 2: representation geometry

Second law of large numbers: geometry of the representation
(Rahimi and Recht, 2007)

⟨ϕ(x), ϕ(x′)⟩ = 1
n

n∑
i=1

ρ(⟨wi, x⟩) ρ(⟨wi, x
′⟩) → Ew∼π

[
ρ(⟨w, x⟩) ρ(⟨w, x′⟩)

]

Ex,x
′

[
(⟨ϕ(x), ϕ(x′)⟩ − ⟨ϕ(x), ϕ(x′)⟩)2

]
(Kornblith et al., 2019)

23 / 28

Law of large numbers 2: representation geometry

Second law of large numbers: geometry of the representation
(Rahimi and Recht, 2007)

⟨ϕ(x), ϕ(x′)⟩ = 1
n

n∑
i=1

ρ(⟨wi, x⟩) ρ(⟨wi, x
′⟩) → Ew∼π

[
ρ(⟨w, x⟩) ρ(⟨w, x′⟩)

]

Ex,x
′

[
(⟨ϕ(x), ϕ(x′)⟩ − ⟨ϕ(x), ϕ(x′)⟩)2

]
(Kornblith et al., 2019)

23 / 28

Law of large numbers 2: representation geometry

Second law of large numbers: geometry of the representation
(Rahimi and Recht, 2007)

⟨ϕ(x), ϕ(x′)⟩ = 1
n

n∑
i=1

ρ(⟨wi, x⟩) ρ(⟨wi, x
′⟩) → Ew∼π

[
ρ(⟨w, x⟩) ρ(⟨w, x′⟩)

]

Ex,x
′

[
(⟨ϕ(x), ϕ(x′)⟩ − ⟨ϕ(x), ϕ(x′)⟩)2

]
(Kornblith et al., 2019)

23 / 28

Law of large numbers 2: representation geometry

Second law of large numbers: geometry of the representation
(Rahimi and Recht, 2007)

⟨ϕ(x), ϕ(x′)⟩ = 1
n

n∑
i=1

ρ(⟨wi, x⟩) ρ(⟨wi, x
′⟩) → Ew∼π

[
ρ(⟨w, x⟩) ρ(⟨w, x′⟩)

]

Ex,x
′

[
(⟨ϕ(x), ϕ(x′)⟩ − ⟨ϕ(x), ϕ(x′)⟩)2

]
(Kornblith et al., 2019)

23 / 28

Network alignment

⟨ϕ(x), ϕ(x′)⟩
→ ⟨ϕ(x), ϕ(x′)⟩

Define the alignment A with min
A

T
A=Id Ex

[
∥Aϕ(x) − ϕ(x)∥2

]
We have A = UV T from the SVD of Ex

[
ϕ(x)ϕ(x)T

]
= USV T.

Theorem: If neuron
weights are i.i.d. samples
from π, then Aϕ → ϕ in
mean square, polynomially
in the width, and
independently of the
dimension.

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

Scattering-7 on CIFAR-10

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

ResNet-18 on ImageNet

First

Last

L
ay

er
j

24 / 28

Network alignment

⟨ϕ(x), ϕ(x′)⟩
→ ⟨ϕ(x), ϕ(x′)⟩

Define the alignment A with min
A

T
A=Id Ex

[
∥Aϕ(x) − ϕ(x)∥2

]
We have A = UV T from the SVD of Ex

[
ϕ(x)ϕ(x)T

]
= USV T.

Theorem: If neuron
weights are i.i.d. samples
from π, then Aϕ → ϕ in
mean square, polynomially
in the width, and
independently of the
dimension.

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

Scattering-7 on CIFAR-10

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

ResNet-18 on ImageNet

First

Last

L
ay

er
j

24 / 28

Network alignment

⟨ϕ(x), ϕ(x′)⟩
→ ⟨ϕ(x), ϕ(x′)⟩

Define the alignment A with min
A

T
A=Id Ex

[
∥Aϕ(x) − ϕ(x)∥2

]

We have A = UV T from the SVD of Ex

[
ϕ(x)ϕ(x)T

]
= USV T.

Theorem: If neuron
weights are i.i.d. samples
from π, then Aϕ → ϕ in
mean square, polynomially
in the width, and
independently of the
dimension.

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

Scattering-7 on CIFAR-10

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

ResNet-18 on ImageNet

First

Last

L
ay

er
j

24 / 28

Network alignment

⟨ϕ(x), ϕ(x′)⟩
→ ⟨ϕ(x), ϕ(x′)⟩

Define the alignment A with min
A

T
A=Id Ex

[
∥Aϕ(x) − ϕ(x)∥2

]
We have A = UV T from the SVD of Ex

[
ϕ(x)ϕ(x)T

]
= USV T.

Theorem: If neuron
weights are i.i.d. samples
from π, then Aϕ → ϕ in
mean square, polynomially
in the width, and
independently of the
dimension.

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

Scattering-7 on CIFAR-10

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

ResNet-18 on ImageNet

First

Last

L
ay

er
j

24 / 28

Network alignment

⟨ϕ(x), ϕ(x′)⟩
→ ⟨ϕ(x), ϕ(x′)⟩

Define the alignment A with min
A

T
A=Id Ex

[
∥Aϕ(x) − ϕ(x)∥2

]
We have A = UV T from the SVD of Ex

[
ϕ(x)ϕ(x)T

]
= USV T.

Theorem: If neuron
weights are i.i.d. samples
from π, then Aϕ → ϕ in
mean square, polynomially
in the width, and
independently of the
dimension.

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

Scattering-7 on CIFAR-10

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

ResNet-18 on ImageNet

First

Last

L
ay

er
j

24 / 28

Network alignment

⟨ϕ(x), ϕ(x′)⟩
→ ⟨ϕ(x), ϕ(x′)⟩

Define the alignment A with min
A

T
A=Id Ex

[
∥Aϕ(x) − ϕ(x)∥2

]
We have A = UV T from the SVD of Ex

[
ϕ(x)ϕ(x)T

]
= USV T.

Theorem: If neuron
weights are i.i.d. samples
from π, then Aϕ → ϕ in
mean square, polynomially
in the width, and
independently of the
dimension.

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

Scattering-7 on CIFAR-10

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

ResNet-18 on ImageNet

First

Last

L
ay

er
j

24 / 28

Mean-field limit in hidden layers

⟨w, ϕ(x)⟩ = ⟨Aw,Aϕ(x)⟩ ≈ ⟨Aw, ϕ(x)⟩

In deeper layers, we expect
a mean-field limit on the
aligned neuron weights
{Aw}

25 / 28

Mean-field limit in hidden layers

⟨w, ϕ(x)⟩ = ⟨Aw,Aϕ(x)⟩ ≈ ⟨Aw, ϕ(x)⟩

In deeper layers, we expect
a mean-field limit on the
aligned neuron weights
{Aw}

25 / 28

Mean-field limit in hidden layers

⟨w, ϕ(x)⟩ = ⟨Aw,Aϕ(x)⟩ ≈ ⟨Aw, ϕ(x)⟩

In deeper layers, we expect
a mean-field limit on the
aligned neuron weights
{Aw}

25 / 28

Mean-field limit in hidden layers

⟨w, ϕ(x)⟩ = ⟨Aw,Aϕ(x)⟩ ≈ ⟨Aw, ϕ(x)⟩

In deeper layers, we expect
a mean-field limit on the
aligned neuron weights
{Aw}

25 / 28

A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at
each layer

Generative model of network weights
Neuron weights wj,i = AT

j−1w
′
j,i with w′

j,i ∼ πj . Algorithm:

Sample W1 =⇒ Align ϕ1 to ϕ1 =⇒ Sample W2 =⇒ · · ·

Theorem: ∀j, Aj ϕj → ϕj

in mean square,
polynomially in the widths,
and independently of the
dimension.

26 / 28

A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at
each layer

Generative model of network weights
Neuron weights wj,i = AT

j−1w
′
j,i with w′

j,i ∼ πj . Algorithm:

Sample W1 =⇒ Align ϕ1 to ϕ1 =⇒ Sample W2 =⇒ · · ·

Theorem: ∀j, Aj ϕj → ϕj

in mean square,
polynomially in the widths,
and independently of the
dimension.

26 / 28

A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at
each layer

Generative model of network weights
Neuron weights wj,i = AT

j−1w
′
j,i with w′

j,i ∼ πj . Algorithm:

Sample W1 =⇒ Align ϕ1 to ϕ1 =⇒ Sample W2 =⇒ · · ·

Theorem: ∀j, Aj ϕj → ϕj

in mean square,
polynomially in the widths,
and independently of the
dimension.

26 / 28

A probabilistic model of network weights

“Maximum-entropy” model under the mean-field constraints at
each layer

Generative model of network weights
Neuron weights wj,i = AT

j−1w
′
j,i with w′

j,i ∼ πj . Algorithm:

Sample W1 =⇒ Align ϕ1 to ϕ1 =⇒ Sample W2 =⇒ · · ·

Theorem: ∀j, Aj ϕj → ϕj

in mean square,
polynomially in the widths,
and independently of the
dimension.

26 / 28

Covariance and dimensionality: the rainbow model

G, Ménard, Rochette, and Mallat. A rainbow in deep network black boxes. arXiv, 2023.

27 / 28

Conclusion

Conclusion

How can we explain the performance of deep learning?

▶ A multiscale factorization of image distributions can reveal
log-concavity or locality properties

▶ CNNs rely on phase collapses to separate image classes
▶ The trained weights compute colored random projections

whose distribution is aligned to the input representation

Further research:

▶ Why and how do score networks generalize?
▶ How to understand the role of depth?

28 / 28

Conclusion

How can we explain the performance of deep learning?

▶ A multiscale factorization of image distributions can reveal
log-concavity or locality properties

▶ CNNs rely on phase collapses to separate image classes
▶ The trained weights compute colored random projections

whose distribution is aligned to the input representation

Further research:

▶ Why and how do score networks generalize?
▶ How to understand the role of depth?

28 / 28

Conclusion

How can we explain the performance of deep learning?

▶ A multiscale factorization of image distributions can reveal
log-concavity or locality properties

▶ CNNs rely on phase collapses to separate image classes

▶ The trained weights compute colored random projections
whose distribution is aligned to the input representation

Further research:

▶ Why and how do score networks generalize?
▶ How to understand the role of depth?

28 / 28

Conclusion

How can we explain the performance of deep learning?

▶ A multiscale factorization of image distributions can reveal
log-concavity or locality properties

▶ CNNs rely on phase collapses to separate image classes
▶ The trained weights compute colored random projections

whose distribution is aligned to the input representation

Further research:

▶ Why and how do score networks generalize?
▶ How to understand the role of depth?

28 / 28

Conclusion

How can we explain the performance of deep learning?

▶ A multiscale factorization of image distributions can reveal
log-concavity or locality properties

▶ CNNs rely on phase collapses to separate image classes
▶ The trained weights compute colored random projections

whose distribution is aligned to the input representation

Further research:

▶ Why and how do score networks generalize?
▶ How to understand the role of depth?

28 / 28

Conclusion

How can we explain the performance of deep learning?

▶ A multiscale factorization of image distributions can reveal
log-concavity or locality properties

▶ CNNs rely on phase collapses to separate image classes
▶ The trained weights compute colored random projections

whose distribution is aligned to the input representation

Further research:

▶ Why and how do score networks generalize?

▶ How to understand the role of depth?

28 / 28

Conclusion

How can we explain the performance of deep learning?

▶ A multiscale factorization of image distributions can reveal
log-concavity or locality properties

▶ CNNs rely on phase collapses to separate image classes
▶ The trained weights compute colored random projections

whose distribution is aligned to the input representation

Further research:

▶ Why and how do score networks generalize?
▶ How to understand the role of depth?

28 / 28

Thank you!

	Exploiting Structure in Image Probability Distributions
	Enforcing Structure in Convolutional Network Architectures
	Discovering Structure in Learned Network Weights
	Conclusion

