
Préparée à l’École Normale Supérieure de Paris

Towards a Mathematical Understanding
of Deep Convolutional Neural Networks

Soutenue par

Florentin Guth
Le 29 Août 2023

École doctorale no386
Sciences Mathématiques
de Paris Centre

Spécialité
Mathématiques appliquées

Composition du jury :

Lorenzo Rosasco
Professor, Univ. Genova Rapporteur

Eric Vanden-Eijnden
Professor, Courant Institute, NYU Rapporteur

Francis Bach
Professeur, INRIA Président du jury

Giulio Biroli
Professeur, ENS Examinateur

Marylou Gabrié
Assistant Professor, Polytechnique Examinatrice

Stéphane Mallat
Professeur, Collège de France Directeur de thèse





À mes parents, Marie-Françoise et Claude.





Résumé

Les réseaux de neurones convolutifs profonds ont obtenu un succès considérable en vision par or-
dinateur, à la fois pour l’apprentissage non-supervisé (i.e., génération d’image) et l’apprentissage
supervisé (i.e., classification d’image). Cependant, les principes fondamentaux derrière ces ré-
sultats impressionnants ne sont pas bien compris. En particulier, l’apprentissage profond semble
échapper à la malédiction de la dimensionalité, ce qui révèle une structure mathématique riche
dans les problèmes d’apprentissage rencontrés en pratique. Cette structure est présente dans
les interactions entre les données d’entraînement (sur quelles propriétés se repose-t-on implicite-
ment ?), l’architecture (quel est le rôle fonctionnel rempli par ses composants ?) et l’algorithme
d’optimisation (qu’est-ce que le réseau a appris ?). Cette thèse comporte des résultats sur
ces trois questions. Premièrement, nous montrons qu’une factorisation multi-échelles des dis-
tributions d’images peut révéler des propriétés de régularité, des structures de dépendances
markoviennes locales, et même de la log-concavité conditionnelle, alors que la distribution glob-
ale ne possède pas ces propriétés. Cela conduit à des algorithmes efficaces d’apprentissage et
d’échantillonnage dont on peut contrôler toutes les sources d’erreurs. Deuxièmement, nous étu-
dions le rôle de la non-linéarité en classification d’images, et montrons que sa fonction principale
est de collapser la phase complexe des coefficients d’ondelettes des activations du réseau. En
revanche, des modèles précédents reposant sur des seuillages et des hypothèses de parcimonie ne
sont ni suffisants ni nécessaires pour expliquer la précision de classification des réseaux profonds.
Troisièmement, nous introduisons un modèle probabiliste des poids appris dans les architecture
profondes, en capturant les dépendances entre couches par un alignement des activations du
réseau sur une représentation déterministe associée à un noyau reproduisant. Le modèle est
spécifié à travers des distributions à chaque couche, dont les covariances sont de bas rang et
réalisent une réduction de dimensionalité entre les plongements en haute dimension calculés par
la non-linéarité. Dans certains cas, ces distributions sont approximativement gaussiennes, et
leurs covariances capturent la performance et la dynamique d’entraînement du réseau.

réseaux de neurones convolutifs ⋆ apprentissage profond ⋆ vision par ordinateur ⋆ classifi-
cation d’images ⋆ génération d’images ⋆ représentations multi-échelles





Abstract

Deep convolutional neural networks have achieved considerable success in computer vision tasks,
both in unsupervised learning (e.g., image generation) and supervised learning (e.g., image clas-
sification). However, the fundamental principles behind these impressive results remain not well
understood. In particular, deep learning seemingly escapes the curse of dimensionality in prac-
tice, which evidences a rich mathematical structure underlying real-world learning problems.
This structure is revealed by the interplay between the training data (what properties are we
implicitly relying on?), the architecture (what is the functional role of network computations?),
and the optimization algorithm (what has the network learned?). This thesis presents results
on these three questions. First, we demonstrate that a multiscale factorization of image dis-
tributions can reveal properties of smoothness, local Markov dependency structure, and even
conditional log-concavity, whereas the global distribution does not enjoy these properties. It
leads to efficient learning and sampling algorithms where all sources of errors can be controlled.
Second, we investigate the role of non-linearity in image classification, and show that its main
function is to collapse the phase of complex wavelet coefficients of network activations. In con-
trast, previous models based on thresholding and sparsity assumptions are neither sufficient
nor necessary to explain the classification accuracy of deep networks. Third, we introduce a
probabilistic model of learned weights in deep architectures, with layer dependencies that are
captured by alignment of the network activations to deterministic kernel embeddings. The model
is specified through weight distributions at each layer, whose covariances are low-rank and per-
form dimensionality reduction in-between the high-dimensional embeddings computed by the
non-linearities. In some cases, these weight distributions are approximately Gaussian, and their
covariances capture the performance and training dynamics of the network.

convolutional neural networks ⋆ deep learning ⋆ computer vision ⋆ image classification ⋆
image generative modeling ⋆ multiscale representations





Remerciements

J’aimerais commencer ce manuscrit en remerciant Stéphane. Stéphane, merci profondément
pour ces quatre ans et demi de thèse. J’ai tant appris à tes côtés, graĉe à ta disponibilité, ton
investissemment et ton exigence. En particulier, tu m’as transmis ta passion de la recherche, et
je t’en suis extrêmement reconnaissant. Merci pour toutes les discussions au tableau dans ton
bureau dont je suis sorti avec des étoiles dans les yeux. Je continuerai longtemps d’être inspiré
par ton talent, ton énergie et ta vision scientifique. Merci infiniment.

Je voudrais aussi remercier Brice Ménard, qui a été comme un second directeur de thèse
pour moi. Brice, tu m’as enseigné à raisonner et voir le monde comme un physicien, et ce que
j’ai appris grâce à toi va bien plus loin que la recherche. Merci pour nos nombreuses discussions
à toute heure du jour et de la nuit, où n’importe quel sujet est à portée d’une connection ou
analogie. Merci aussi pour tes conseils, tes encouragements et ton soutien. Cette thèse ne serait
pas la même si tu n’était pas venu passer un an à l’ENS. Je te dois beaucoup.

Plus largement, j’ai bénéficié durant ma thèse des conseils de plusieurs personnes dont je
suis reconaissant. Je remercie Francis Bach de m’avoir suivi depuis ma scolarité à l’ENS, et
pour m’avoir maintes fois aidé dans mes démarches ou ma recherche. Tomás, merci pour tes
nombreuses explications patientes pendant mon stage dans l’équipe, tu as été un mentor pour
moi. And finally, thank you Eero for your precious career advice.

Je voudrais aussi remercier les professeurs qui m’ont donnée envie de poursuivre une carrière
scientifique. Merci à M. Miguet, M. Buffenoir et Mme Arnaud. Merci en particulier à mes
professeurs de maths du Lycée du Parc, Franz Ridde et Denis Choimet, pour m’avoir donné le
goût d’apprendre et de comprendre, et d’avoir été des professeurs exceptionnels.

I would like to warmly thank Lorenzo Rosasco and Eric Vanden-Eijnden for agreeing to write
a report on this manuscript—without knowing what they were getting into! Merci également
aux membres du jury d’avoir accepté d’en faire partie : Francis Bach, Giulio Biroli, Marylou
Gabrié.

Je salue tous les membres de la joyeuse équipe DATA à l’ENS, qui ont grandement égayé
mon séjour dans le labo. Merci aux “grands”, Edouard, Alberto, Roberto, Tanguy et Simon, et
aux “petits”, Samuel, Etienne et Nathanaël. Merci à Tomás pour les discussions philosophiques,
à Louis pour son sens de la formule inégalé, et à Antoine pour les cours d’informatique. Merci
particulièrement à John pour les débats politiques et déontologiques. Enfin, je remercie mes
acolytes de thèse : Rudy, pour relever le niveau d’humour du labo, et Gaspar, pour le rabaisser.
J’ai eu de la chance de faire ma thèse en même temps que vous.

Plus largement, je souhaite aussi remercier tous les membres du CSD qui ont contribué à en
faire un lieu de travail agréable. Merci à Zaccharie pour sa co-organisation des séminaires d’une
efficacité redoutable, c’était un plaisir de faire ça avec toi ! Merci à Rudy mon co-fondateur
du random lunch pour avoir été là pendant toutes nos péripéties administratives, et merci à
Pablo et Etienne d’avoir repris le flambeau. Merci à Gabriel et Bruno pour leur disponibilité et
leurs conseils experts. Et pour l’ambiance toujours au top, merci à Maria, Léa, Pablo, Mathieu,
Michael, Othmane, Raphaël.

I have been lucky to spend an awesome summer at the Flatiron Institute. Stéphane, thanks
a lot for this amazing opportunity. I would like to thank Eero and Matthew, who truly went out
of their way to make me feel welcome. Thanks to everyone at CCN who made my stay a great



time: Zahra for the both fascinating and fun collaboration, Pierre-Étienne pour ton amitié, Ben
for the many late-night discussions (except when it was about desacrating French gastronomy),
and for contributing to the lively atmosphere: Lyndon, Jules, David, Siavash, Teddy, Nikhil. I
also thank Bargeen, Mashail, Melissa for the fun times we had together.

This summer in the US was also the occasion to visit Johns Hopkins: thank you Brice for
the invitation and your hospitality. I would like to thank the Bonner Lab for the many inspiring
discussions. In particular, thank you Mick for your very generous offer to share a keynote and
tutorial at the CCN conference, and thanks a lot for your valuable feedback and help. This
was an intense sprint, with my defense being three days later not exactly helping, but this was
extremely rewarding! I also extend special thanks to the amazing team for their tireless efforts
in bringing our tutorial together: Raj, Atlas, Ray. This was a lot of fun thanks to you!

Je voudrais également remercier mes co-auteurs pour leur intensité à toute épreuve dans les
deadlines, parfois jusqu’à la nuit blanche : merci à John, Zahra, Etienne, Tomás, Eero, Simon,
Valentin.

J’ai eu de nombreuses opportunités d’enseigner pendant ma thèse, et je voudrais remercier
mes élèves pour leur motivation et leur participation. Merci aux élèves du CPES d’être partic-
ulièrement adorables, et à l’équipe de profs et chargés de TDs pour avoir toujours été disponible
pour des remplacements : Sébastien, Cyrille, Pierre, Thibault, Pierre, Thomas, Raphaël, Eti-
enne, Yafei. Merci aussi à Antoine Lamy et Bertrand Léonard de m’avoir accueuilli à Optimal
Sup-Spé puis Ipesup, et de m’avoir fait confiance pour créer un stage d’initiation à l’IA pour
lycéens à partir de rien. Enfin, merci à Lolo pour son sponsoring.

Je n’ai pas appris qu’à faire de la recherche durant cette thèse. Je voudrais remercier mes
professeurs de musique pour tout ce qu’ils m’ont enseigné : Claire, Hugues, Il-Woong. En parti-
culier, je tiens à remercier chaleureusement Claire pour sa capacité à toujours trouver les bons
mots et sa gentillesse. Les cours et la pratique des instruments m’ont permis de faire des pauses,
recharger les batteries dans les moments difficiles, et repartir avec de la musique plein la tête :
je leur suis très reconnaissant pour cela.

Cette thèse doit également beaucoup à diverses sources de réconfort matériel qui ne m’ont
jamais abandonné : merci aux boulangeries du quartier, aux japonais à volonté, et aux restaus
du coin dont j’ai fini par enregistrer le numéro dans mes contacts. Merci aussi aux sitcoms et à
la team du lundi pour le divertissement.

Merci à ma famille de créer un climat si agréable où l’on se sent apprécié quoi qu’il arrive,
et pour tous les bons moments passés à Frangy avec les cousins.

J’adresse mes remerciements aux amis de l’ENS, pour leur compagnie toujours très agréable :
merci à Suzanne, Lucas, Pauline, Jules. Merci aussi aux info16 pour les retrouvailles régulières :
Marc, Matthieu, Luc, Lucas P, Lucas W. Je remercie également les compères Martin et Rudy
pour les Nouvel An improvisés et moins improvisés, les soirées jeux et les sorties parisiennes.
Enfin, merci aux zigotos du Bolmen Palace : Jean-Paul Robin, pour le role-play grincheux, pour
les lamentations chroniques, les parodies musicales pourries, et les imitations baveuses; et Lionel
Zoubritzky, pour le role-play chose, pour l’art du malaise, pour m’aider à faire tourner Paul
en bourrique, et pour les retournements de veste inévitables. Merci à tous les deux pour nos
partenariats commerciaux avec Jojo et Lolo, pour les discussions d’un intérêt douteux, le Pâtes
Thaï fermé le dimanche soir, et pour Potiche McPotFace.

Pour finir, je voudrais remercier Roro, Papa et Maman pour leur soutien indéfectible.

viii



Table of contents

Résumé iii

Abstract v

Remerciements vii

1 Introduction 1
1.1 Curse of dimensionality and structure in computer vision . . . . . . . . . . . . . 2

1.1.1 Learning models of high-dimensional probability distributions . . . . . . . 2
1.1.2 The curse of dimensionality in supervised learning . . . . . . . . . . . . . 4
1.1.3 The curse of dimensionality in unsupervised learning . . . . . . . . . . . . 5
1.1.4 Deep convolutional neural networks . . . . . . . . . . . . . . . . . . . . . 5
1.1.5 Leveraging structure to escape the curse of dimensionality . . . . . . . . . 7

1.2 Properties of wavelet conditional probability distributions . . . . . . . . . . . . . 10
1.2.1 Score-based diffusions and autoregressive factorizations . . . . . . . . . . 10
1.2.2 Conditional log-concavity of physical fields . . . . . . . . . . . . . . . . . 13
1.2.3 Conditional locality and regularity of natural images . . . . . . . . . . . . 15

1.3 Non-linear operators for image classification . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Separation and concentration in deep networks . . . . . . . . . . . . . . . 17
1.3.2 Concentration with thresholdings in sparse representations . . . . . . . . 18
1.3.3 Separation with phase collapses of wavelet coefficients . . . . . . . . . . . 20

1.4 A model of network weights with aligned random features . . . . . . . . . . . . . 22
1.4.1 Random-feature kernels in deep networks . . . . . . . . . . . . . . . . . . 22
1.4.2 Evolution of kernels and training dynamics . . . . . . . . . . . . . . . . . 23
1.4.3 Alignment convergence: the rainbow model . . . . . . . . . . . . . . . . . 24

1.5 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

I Properties of Wavelet Conditional Probability Distributions 29

2 Conditionally Strongly Log-Concave Generative Models 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Conditionally strongly log-concave models . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Conditional factorization and log-concavity . . . . . . . . . . . . . . . . . 33
2.2.2 Learning guarantees with score matching . . . . . . . . . . . . . . . . . . 35
2.2.3 Score matching with exponential families . . . . . . . . . . . . . . . . . . 36
2.2.4 Sampling guarantees with MALA . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Wavelet packet conditional log-concavity . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Energies with scalar potentials . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Wavelet packets and renormalization group . . . . . . . . . . . . . . . . . 39
2.3.3 Multiscale scalar potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



2.4.1 φ4 scalar potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.2 Conditional log-concavity . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 Application to cosmological data . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Wavelet Score-Based Generative Models 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Sampling and discretization of score-based generative models . . . . . . . . . . . 47

3.2.1 Score-based generative models . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Discretization of SGMs and score regularity . . . . . . . . . . . . . . . . . 48

3.3 Wavelet score-based generative models . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Wavelet whitening and cascaded SGMs . . . . . . . . . . . . . . . . . . . 50
3.3.2 Discretization and accuracy for Gaussian processes . . . . . . . . . . . . . 52

3.4 Acceleration with WSGM: numerical results . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Physical processes with scalar potentials . . . . . . . . . . . . . . . . . . . 53
3.4.2 Scale-wise time reduction in natural images . . . . . . . . . . . . . . . . . 54

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Multiscale Local Conditional Models of Images 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Markov wavelet conditional models . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Score-based markov wavelet conditional models . . . . . . . . . . . . . . . . . . . 60
4.4 Markov wavelet conditional denoising . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Markov wavelet conditional super-resolution and synthesis . . . . . . . . . . . . . 64
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

II Non-Linear Operators for Image Classification 69

5 Separation and Concentration in Deep Networks 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Classification by separation and concentration . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Tight frame rectification and thresholding . . . . . . . . . . . . . . . . . . 72
5.2.2 Two-layer networks without bias . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Deep learning by scattering and concentrating . . . . . . . . . . . . . . . . . . . . 77
5.3.1 Scattering cascade of wavelet frame separations . . . . . . . . . . . . . . . 77
5.3.2 Separation and concentration in learned scattering networks . . . . . . . . 79

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Phase Collapse in Deep Networks 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Eliminating spatial variability with phase collapses . . . . . . . . . . . . . . . . . 85
6.3 Learned scattering network with phase collapses . . . . . . . . . . . . . . . . . . 86
6.4 Phase collapses versus amplitude reductions . . . . . . . . . . . . . . . . . . . . . 88
6.5 Iterating phase collapses and amplitude reductions . . . . . . . . . . . . . . . . . 91

6.5.1 Iterated phase collapses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.2 Iterated amplitude reductions . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

x



III A Model of Network Weights with Aligned Random Features 95

7 The Rainbow Model of Deep Networks 97
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Rainbow networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.1 Rotations in random feature maps . . . . . . . . . . . . . . . . . . . . . . 100
7.2.2 Deep rainbow networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2.3 Symmetries and convolutional rainbow networks . . . . . . . . . . . . . . 109

7.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3.1 Convergence of activations in the infinite-width limit . . . . . . . . . . . . 112
7.3.2 Properties of learned weight covariances . . . . . . . . . . . . . . . . . . . 114
7.3.3 Gaussian rainbow approximations . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Conclusion 129

8 Conclusion 129
8.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Appendices 135

A Appendix for Chapter 2 135
A.1 Definition of wavelet packet projectors . . . . . . . . . . . . . . . . . . . . . . . . 135

A.1.1 Conjugate mirror filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.1.2 Orthogonal frequency decomposition . . . . . . . . . . . . . . . . . . . . . 136
A.1.3 Wavelet packet projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.2 Score matching and MALA algorithms for CSLC exponential families . . . . . . 137
A.2.1 Multiscale energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2.2 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.3.3 Mixing times in MALA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.4 Energy estimation with free-energy modeling . . . . . . . . . . . . . . . . . . . . 142
A.4.1 Free-energy score matching . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.4.2 Parameterized free-energy models . . . . . . . . . . . . . . . . . . . . . . . 142
A.4.3 Multiscale energy decomposition . . . . . . . . . . . . . . . . . . . . . . . 143

A.5 Proof of Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B Appendix for Chapter 3 145
B.1 WSGM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.2 Introduction to the fast orthogonal wavelet transform . . . . . . . . . . . . . . . 146
B.3 Experimental details on Gaussian experiments . . . . . . . . . . . . . . . . . . . 147
B.4 Experimental details on the φ4 model . . . . . . . . . . . . . . . . . . . . . . . . 148
B.5 Experimental details on CelebA-HQ . . . . . . . . . . . . . . . . . . . . . . . . . 148

xi



C Appendix for Chapter 4 151
C.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.2 Proof of equation (4.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
C.3 Training and architecture details . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
C.4 Wavelet conditional synthesis algorithm . . . . . . . . . . . . . . . . . . . . . . . 153

D Appendix for Chapter 5 155
D.1 Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
D.2 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
D.3 Implementation and network dimensions . . . . . . . . . . . . . . . . . . . . . . . 156

E Appendix for Chapter 6 159
E.1 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
E.2 Proof of equation (6.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
E.3 Proof of Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
E.4 Proof of Theorem 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
E.5 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

F Appendix for Chapter 7 165
F.1 Proof of Theorem 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

F.1.1 Proof outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
F.1.2 Proof of Lemma F.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
F.1.3 Proof of Lemma F.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
F.1.4 Proof of Lemma F.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
F.1.5 Proof of Lemma F.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

F.2 Proof of Theorem 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
F.3 Proof of Theorem 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
F.4 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Bibliography 179

xii



Chapter

1
Introduction

De tous temps, les hommes ont
voulu craquer le deep learning.

Adage populaire

Chapter content
1.1 Curse of dimensionality and structure in computer vision . . . . . . 2

1.1.1 Learning models of high-dimensional probability distributions . . . . . . 2
1.1.2 The curse of dimensionality in supervised learning . . . . . . . . . . . . 4
1.1.3 The curse of dimensionality in unsupervised learning . . . . . . . . . . . 5
1.1.4 Deep convolutional neural networks . . . . . . . . . . . . . . . . . . . . 5
1.1.5 Leveraging structure to escape the curse of dimensionality . . . . . . . . 7

1.2 Properties of wavelet conditional probability distributions . . . . . 10
1.2.1 Score-based diffusions and autoregressive factorizations . . . . . . . . . 10
1.2.2 Conditional log-concavity of physical fields . . . . . . . . . . . . . . . . 13
1.2.3 Conditional locality and regularity of natural images . . . . . . . . . . . 15

1.3 Non-linear operators for image classification . . . . . . . . . . . . . . 16
1.3.1 Separation and concentration in deep networks . . . . . . . . . . . . . . 17
1.3.2 Concentration with thresholdings in sparse representations . . . . . . . 18
1.3.3 Separation with phase collapses of wavelet coefficients . . . . . . . . . . 20

1.4 A model of network weights with aligned random features . . . . . 22
1.4.1 Random-feature kernels in deep networks . . . . . . . . . . . . . . . . . 22
1.4.2 Evolution of kernels and training dynamics . . . . . . . . . . . . . . . . 23
1.4.3 Alignment convergence: the rainbow model . . . . . . . . . . . . . . . . 24

1.5 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . . 27

Deep neural networks have achieved considerable success in machine learning applications
in the past ten years (LeCun et al., 2015). They have been applied to various types of data,
including images, videos, audio data, time series, but also text, graphs, and game states, in both
supervised and unsupervised learning tasks.

However, the fundamental principles behind these impressive results remain not well un-
derstood. In particular, the high-dimensionality of the data is a major challenge in theoretical
analyses. It manifests itself in several forms, and leads to issues in function approximation,
parameter estimation, generalization, and data generation. These challenges are collectively
referred to as the curse of dimensionality.

In practice, deep learning seemingly escapes this curse and has emerged as an empirical
solution to these challenges. Its success thus evidences a rich mathematical structure underlying
real-world learning problems. This structure is revealed by the interplay between the training
data (what properties are we implicitly relying on?), the architecture (what is the functional role



Chapter 1. Introduction

of network computations?), and the optimization algorithm (what has the network learned?).
This dissertation studies these questions, in the context of convolutional networks applied to
image generative modeling and image classification.

Outline. In this introduction, we present the various concepts used in the dissertation, as well
as our contributions in relation to the prior state of the art.

In Section 1.1, we contrast the theoretical challenges coming from the curse of dimensionality
in machine learning with the empirical success of deep-learning approaches. We then present
classical notions of structure in the learning problem that can be leveraged to escape the curse.
The next three sections tackle three different aspects of this structure: in the training data, in
network computations, and in network weights.

In Section 1.2, we focus on the unsupervised learning problem of image generative modeling.
We explain that a multiscale factorization of image distributions can reveal properties of con-
ditional log-concavity, regularity, and local Markov dependency structure, whereas the global
distribution does not enjoy these properties. These properties can then be leveraged to alleviate
the curse of dimensionality.

In Section 1.3, we then turn to the supervised learning problem of image classification. We in-
vestigate the role of non-linearity in image classification, and review two classical interpretations
which respectively leverage sparsity and symmetry groups. We show that the main function of
the non-linearity in deep network classifiers is to collapse the phase of complex wavelet coeffi-
cients of network activations. In contrast, previous models based on thresholding and sparsity
assumptions are neither sufficient nor necessary to explain the classification accuracy of deep
networks.

In Section 1.4, we study properties of the weights of trained deep networks. We introduce a
hierarchical kernel description of the network based on multi-layer random features. It leads to
a probabilistic model of the learned weights. The model can be estimated from the weights of
one or several trained networks, and allows generating new weights which can reach comparable
accuracies without training.

Finally, we describe the organization of the dissertation in Section 1.5.

1.1 Curse of dimensionality and structure in computer vision

General machine learning problems suffer from the curse of dimensionality. In contrast, deep
learning seems to escape this curse in typical computer vision tasks. This raises the following
question: what kind of structure in image distributions are deep convolutional neural networks
leveraging? In this section, we introduce the learning tasks studied in this dissertation (Sec-
tion 1.1.1), their theoretical challenges (Sections 1.1.2 and 1.1.3), deep-learning approaches and
their empirical results (Section 1.1.4), and classical assumptions on the structure of the data
distribution to alleviate the curse of dimensionality (Section 1.1.5).

1.1.1 Learning models of high-dimensional probability distributions

Data distribution. Consider a probability distribution p known implicitly through a dataset
of i.i.d. samples. In this dissertation, our data will consist in sets of images coming from several
sources, ranging from physical fields to natural images, illustrated in Figure 1.1. In addition to
distributions p(x) of images x, we shall also consider joint distributions p(x, y) of both images
x and class labels y (e.g., “car” or “ship”).

Approximation in a parametric model. A major goal in science is then to learn a paramet-
ric model of p from the training dataset. In unsupervised learning, we wish to model the whole

2



Section 1.1. Curse of dimensionality and structure in computer vision

Figure 1.1: The image distributions typically considered in machine learning can be informally organized
on a “complexity” axis, which measures the amount of “structure” or “information” in the image content
(we use these words in an informal sense and do not imply any connections to related mathematical
concepts). The axis ranges from toy theoretical models such as Gaussian processes, to physical fields such
as turbulent flows, to natural textures, to photographic images such as human faces or natural scenes.

distribution p(x), while in supervised learning we only care about the conditional distribution
p(y|x). This is done by introducing a parametric family such as an energy-based model

pθ(x) = 1
Zθ

e−Eθ(x), pθ(y|x) = 1
Zθ(x) e−Eθ(y|x), (1.1)

where Eθ is the “energy” and Zθ is a normalizing factor so that
∫
pθ(x)dx = 1 or

∫
pθ(y|x)dy = 1

(for discrete labels y, the Lebesgue measure should be replaced with the counting measure).

Estimation of the parameters. Once the parametric model has been defined, the param-
eters θ need to be estimated from data so that the model pθ is as close as possible to the
data distribution p. This is usually quantified with the Kullback-Leibler divergence (or relative
entropy) between these distributions, leading to the learning objective

min
θ

KL(p(x) ∥ pθ(x)), min
θ

Ex∼p[KL(p(y|x) ∥ pθ(y|x))]. (1.2)

As p is only known through samples x1, . . . , xn (for unsupervised learning) or (x1, y1), . . . , (xn, yn)
(for supervised learning), it is replaced by the empirical distribution of the training data, recov-
ering the maximum likelihood principle

min
θ

1
n

n∑
i=1
− log pθ(xi), min

θ

1
n

n∑
i=1
− log pθ(yi|xi). (1.3)

Generation of samples from the model. Once the probability model has been learned,
it can be used to evaluate the likelihood of a new data point x, or the conditional likelihood
of candidate labels y given x. Another central task is then to draw samples from the modeled
probability distribution, which generates new data points x (generative modeling) or predicted
labels y given x (classification).

Unsupervised and supervised learning. Together, the unsupervised and supervised learn-
ing tasks can the be combined to obtain a model of and sample from the joint distribution p(x, y).
They thus represent complementary problems, but there is significant interaction between them.
On the one hand, unsupervised learning problems are often turned into one or several super-
vised learning problems, as in self-supervised learning. On the other hand, supervised learning

3



Chapter 1. Introduction

problems can benefit from the analysis of their unsupervised counterparts. In particular, the
model pθ(y|x) can be expected to be accurate only when x is a typical sample of p(x), so that
the properties of p(x) also play an important role in supervised learning.

However, a major difference between the two problems is the dimensionality of the considered
objects. In supervised learning, the label y is typically low-dimensional or takes a small number
of discrete values. In image classification, the number of classes is thus rarely above 103, and it
is then feasible to enumerate all of them. In contrast, the image x is typically high-dimensional,
with a dimensionality of the order of 106 for 512×512 color images. A coarse discretization of the
space of possible images x already has a size of the order of 10106

, and brute force enumeration is
then intractable. The probability distributions p(x) or p(y|x) are thus associated with different
challenges, which we now present, starting with supervised learning.

1.1.2 The curse of dimensionality in supervised learning

The fact that y is low-dimensional or takes a small number of discrete values simplifies the
tasks associated with the probability distribution p(y|x). First, sampling from the conditional
distribution pθ(y|x) can be easily achieved by computing the conditional histogram of y. Sec-
ond, computing the normalizing factor Zθ(x) =

∫
e−Eθ(y|x)dy is also feasible. The remaining

challenges associated with learning the model pθ(y|x) are thus “only” the ones that arise in
supervised learning of a function of the high-dimensional input x. We briefly enumerate these
challenges, which arise from the classical bias-variance trade-off in balancing approximation and
generalization error, and the computational hardness of general statistical estimation.

Approximation. Even though the label y is low-dimensional or discrete, it depends on the
high-dimensional input x. The energy Eθ(y|x) is thus a function of the high-dimensional input
(x, y). The approximation challenge consists in finding a parametric form of the energy Eθ(y|x)
in eq. (1.1) that is expressive enough to capture the apparent complexity of the data presented
in Figure 1.1. Without any prior information on the functional form of the true energy E =
− log p, the approximation class requires a number of parameters that is exponential in the
dimensionality of x.

Estimation. The parameters θ are estimated by solving the optimization problem in eq. (1.3),
or a variant of it. It requires to minimize a function of the high-dimensional parameter vector
θ. This function is in general non-convex, so that (stochastic) gradient descent may be slowed
down by saddle points or remain trapped in a local minimum. In general, finding the global
minimum of the loss function then requires a time that is exponential in the dimensionality of
θ.

Generalization. While optimization is performed on the empirical negative log-likelihood
in eq. (1.3), we wish to control the Kullback-Leibler divergence with respect to the unknown
distribution p in eq. (1.2). Without any assumptions on the data distribution, generalizing to
unseen test data requires a number of training samples that is exponential in the dimensionality
of x.

In this work. In this dissertation, we will mostly focus on the approximation challenge in the
setting of image classification, though the estimation and generalization challenges are of course
relevant in our numerical experiments.

4



Section 1.1. Curse of dimensionality and structure in computer vision

1.1.3 The curse of dimensionality in unsupervised learning

In unsupervised learning, one wishes to learn and sample from a model of the probability dis-
tribution p(x). As it is a function of the high-dimensional input x, the challenges presented
above in Section 1.1.2 also apply here. However, the probability distribution p(x) is now over
the high-dimensional input x, rather than the low-dimensional or discrete label y as in p(y|x).
This leads to additional challenges which we now review.

Estimation. The log-likelihood of a data point x depends on the normalizing factor Zθ. Zθ
is typically unknown and its computation is in general cursed by dimensionality as it requires
computing an integral over the high-dimensional input x. This can also be seen by computing
the gradient of the log-likelihood (the Fisher score)

−∇θ log pθ(x) = ∇θEθ(x)− Ex∼pθ
[∇θEθ(x)], (1.4)

which requires generating samples from the model pθ. This generation task is also cursed by
dimensionality, as we now explain.

Generation. In general, drawing a sample from a probability distribution given by its energy
function Eθ(x) has a time complexity that is exponential in the dimensionality of x. By drawing
a parallel with optimization, the problem of generation requires finding the regions of the space
where the energy Eθ is close enough to its minimum. Without any prior information on the
location of the modes of pθ, one has no option but to explore the whole space, whose volume
is exponential in the dimensionality of x. For instance, generic Markov Chain Monte Carlo
algorithms need to wait for an exponential amount of time before a random proposal stumbles
upon a given mode of pθ.

In this work. In this dissertation, we will tackle both of these issues in the setting of image
generative modeling.

1.1.4 Deep convolutional neural networks

Despite these negative theoretical results, deep learning has achieved surprising success in prac-
tice (LeCun et al., 2015). We briefly present its core components and its achievements in image
classification and generative modeling.

Deep neural networks. An energy-based model must specify the functional form of Eθ(x).
Neural networks specify this functional form through their architecture. A major characteristic
is that it is compositional and cascades linear layers (Wj)1≤j≤J with pointwise non-linearities ρ
such as rectified linear units (Nair and Hinton, 2010). The network function thus writes

Eθ(x) = WJρ(WJ−1ρ(· · · ρ(W1x) · · ·)), (1.5)

with parameters θ = (W1, . . . ,WJ). The network is usually optimized end-to-end with stochas-
tic gradient descent using back-propagation (LeCun et al., 1989a). There are many hyper-
parameters and modifications of this basic scheme that play an important role in practice,
such as mini-batching, changing the optimization algorithm (Kingma and Ba, 2014), momen-
tum, learning rate scheduling (Smith, 2017), data augmentation, batch-normalization (Ioffe and
Szegedy, 2015), initialization scheme, or regularization such as weight decay.

There are other types of layers beyond the two above, most notably normalization layers
such as batch-normalization or divisive normalization. Although they play an important role
in numerical applications, we shall not focus on these layers and do not write them explicitly.

5



Chapter 1. Introduction

Figure 1.2: Examples of convolutional architectures. Left: a convolutional classifier architecture, which
progressively reduces the spatial resolution while increasing the number of channels. Right: a U-Net
architecture as typically used in score-based diffusion models, which is a symmetric encoder-decoder ar-
chitecture.

Similarly, skip-connections have become an ubiquitous component in deep architectures (He
et al., 2016). They can be incorporated in eq. (1.5) by augmenting the non-linearity ρ with the
identity, so that the network non-linearity is t 7→ (ρ(t), t). We also mention attention layers,
which are used extensively in transformer architectures (Vaswani et al., 2017; Dosovitskiy et al.,
2021) that we shall not consider in this dissertation.

Convolutional architectures. In practice, the architecture of the network is further con-
strained by imposing additional structure on the linear layers. Convolutional architectures (Le-
Cun et al., 1989a; LeCun and Bengio, 1995) impose that the linear layers Wj are convolutions
with small filters. The weight sharing between different neurons at a given layer implies that
the linear layers are equivariant to translations, while restricting the neuron receptive field size
leads to locality properties.

Convolutional networks further introduce subsampling or pooling layers, which iteratively
reduce the spatial resolution. Spatial dimensions are progressively transformed into channel
dimensions. It leads to a hierarchical, multiscale architecture which is illustrated in the left
panel of Figure 1.2. Such architectures are appropriate when the output is a scalar or a low-
dimensional vector without spatial topology, as in Eθ(x) or Eθ(y|x).

In some cases, the desired output is an image, such as when directly modeling the Stein
score ∇xEθ(x) in score-based diffusion models. U-Nets (Ronneberger et al., 2015), also known
as hourglass networks (Newell et al., 2016), include upsampling or transposed convolution layers
that progressively increase the spatial resolution back to that of the input image x. The archi-
tecture is then composed of an encoder stage and a decoder stage, with skip-connections from
the encoder to the decoder at each scale. The decoder combines global information computed
by the encoder with fine spatial localization to reconstruct a high-resolution output. The archi-
tecture is illustrated in the right panel of Figure 1.2. Its computation graph resembles that of
a forward and backward propagation in a network computing a scalar function, except that the
weights of the encoder and the decoder are not tied.

Empirical success. Deep-learning-based approaches have obtained impressive results on a
variety of tasks.

In image classification, the ImageNet Large Scale Visual Recognition Challenge (Russakovsky
et al., 2015) has spurred a dramatic improvement in accuracies over the years as the number
of network layers increased (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; He et al.,
2016), as shown in the left panel of Figure 1.3. Nowadays, the state-of-the-art performance
is obtained with transformer architectures (Dosovitskiy et al., 2021) reaching 91% top-1 accu-
racies with billions of parameters, though purely convolutional architectures have been shown
to achieve comparable accuracies (Liu et al., 2022b). Though improvements are in general at-
tributed to the architecture, they also result from increases in data quantity or quality (Hinton
et al., 2015), computing power (Sutton, 2019), and optimization recipes (Wightman et al., 2021).

6



Section 1.1. Curse of dimensionality and structure in computer vision

Figure 1.3: Achievements of deep learning in computer vision. Left: state-of-the-art top-1 ac-
curacies on the ImageNet dataset over the years (source: https: // paperswithcode. com/ sota/
image-classification-on-imagenet ). Right: images generated by the Imagen score-based diffusion
model (Saharia et al., 2022) conditioned by a text caption (reproduced from the original publication).

In image generative modeling, diffusion models (Sohl-Dickstein et al., 2015) and score-based
generative models (Song and Ermon, 2019; Song et al., 2021b) have obtained state-of-the-art
results (Dhariwal and Nichol, 2021). These two approaches are essentially equivalent (Ho et al.,
2020), and we shall refer to them generally as score-based diffusion models in this dissertation.
Score-based diffusion models estimate the (Stein) scores of the probability distributions of the
image x and its contaminations with Gaussian white noise of any variance. This is typically
achieved by a convolutional U-Net architecture augmented with attention layers at coarse reso-
lutions. Score-based diffusion models can be combined with language models to generate images
conditioned on a caption (Saharia et al., 2022; Ramesh et al., 2022; Rombach et al., 2022). The
quality of the high-resolution generated images is impressive, as shown in the right panel of
Figure 1.3.

In this work. These results come in contrast with the theoretical challenges outlined in Sec-
tions 1.1.2 and 1.1.3. They imply that network architectures and training algorithms are adapted
to image distributions, and implicitly rely on some hidden properties. What are these properties,
and how can they be leveraged by deep networks to achieve low error? We present in the next
section several such properties that have been studied in the literature.

1.1.5 Leveraging structure to escape the curse of dimensionality

We briefly review some classical structural assumptions that allow alleviating the curse of di-
mensionality. The properties considered below correspond to assumptions on the energy func-
tion E associated to the data probability distribution p, with E(x) = − log p(x) or E(y|x) =
− log p(y|x). They thus apply to both the training data distribution and the functional form
of the target function to approximate. This list is not meant to be exhaustive, nor a review
of theoretical results. Rather, it is an exposition of concepts used in the remainder of this
dissertation.

Locality and low-dimensionality. One can assume that the energy function E is local, in
the sense that it decomposes as a sum of functions that only depend on pixel values inside
small patches of the image x. It defines an approximation class where learning is reduced
to lower-dimensional functions, thus improving approximation and generalization performance.
In generative modeling, this locality assumption is equivalent to assuming a Markov random
field model (Geman and Geman, 1984) due to the Hammersley-Clifford theorem (Clifford and
Hammersley, 1971). In classification, this leads to a conditional Markov random field (Lafferty
et al., 2001) which recovers the naive Bayes classifier in the extreme case of non-overlapping
patches comprised of individual pixels.

7

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet


Chapter 1. Introduction

One can generalize this assumption by replacing subsets of image pixels with general low-
dimensional projections of x, which then play the role of latent variables. These latent variables
can be either known or unknown, in which case they have to be learned (but assuming their
existence may still alleviate the curse of dimensionality). The spatial topology of images however
provides a strong inductive bias towards latent variables that are localized in the spatial and/or
frequency domains.

Combinations of such hypotheses have been used with various names in the literature, such as
generalized additive models, non-parametric ANOVA models, projection pursuit, or multi-index
models (Bach, 2017a).

Multiscale structure and compositionality. Rather than added together, local functions
in the sense of the above paragraph can also be composed together. This compositionality as-
sumption implies that the energy function E admits a hierarchical form where local information
is iteratively processed and then aggregated over more global regions. The constituent func-
tions are then all low-dimensional, alleviating the curse of dimensionality for the approximation
(Poggio et al., 2017) and generalization errors (Li et al., 2021) in some settings.

Such assumptions of hierarchical locality are central in computer vision (Burt and Adelson,
1983; Mallat, 2008) and closely mirror the architecture of convolutional neural networks. The
axis of depth inside the network then corresponds to an axis of spatial scale. This composition-
ality property then assumes that the energy E has a local multiscale structure, in the sense that
it can be computed with local processing at each scale.

Stationarity and symmetry groups. Another assumption that is commonly used in com-
puter vision alongside multiscale structure is stationarity. It states that the energy function E is
invariant with respect to translations of the image x, i.e., an image or its translation are equally
likely to be observed (for E(x)), and they have the same label y (for E(y|x)). This assumption
motivates the use of weight sharing in convolutional neural networks and thus reduces their
parameter count.

This concept can be generalized to other groups, including geometric groups such as rotations
or scalings. In particular, scaling-invariance implies self-similarity properties on the data prob-
ability distribution. Functions that are invariant to these group actions are similarly obtained
in a hierarchical manner by cascading group-equivariant functions such as group convolutions
(Anselmi et al., 2015; Cohen and Welling, 2016; Kondor and Trivedi, 2018). Such approaches re-
duce the dimensionality of the approximation class by the dimensionality of the group (Anselmi
et al., 2016; Mei et al., 2021; Bietti et al., 2021), so that larger groups are needed for larger
improvements.

One such large group is the group of diffeomorphisms, acting on images by deformation. Its
infinite dimensionality prevents the computation of exact invariants, and the assumption is then
that the energy function E is regular with respect to its action. The scattering transform (Mallat,
2012) is Lipschitz with respect to the action of diffeomorphisms, and is thus approximately
invariant to deformations.

Smoothness and kernels. One may consider different regularity properties than those arising
from group actions. An important instance of such assumptions is that the energy function E
belongs in a specific reproducing kernel Hilbert space (RKHS) (Schölkopf and Smola, 2002).
It corresponds to a smoothness prior, as the RKHS norm of E controls its Lipschitz constant
with respect to the geometry defined on x by the associated kernel. The energy function E
can then be modeled as a linear function over a fixed, possibly infinite-dimensional feature map
corresponding to the chosen kernel. The approximation class takes the form of an exponential
family, which is linear in the parameters and leads to a convex optimization problem (recovering
logistic regression in the supervised setting).

8



Section 1.1. Curse of dimensionality and structure in computer vision

The estimation of the optimal parameters can be solved exactly by leveraging the dual for-
mulation, or approximately with random-feature expansions of the infinite-dimensional kernel
feature map. The approximation and generalization properties of random-feature approxima-
tions are now rather well known (Rahimi and Recht, 2008; Bach, 2017b; Rudi and Rosasco, 2017;
Mei et al., 2022). One then obtains polynomial error rates that are independent of the dimen-
sionality of the input, albeit with an added “implicit” ridge regularization (Jacot et al., 2020).
The key quantities which determine these error rates are the spectrum of the covariance matrix
of the feature map, and the coefficients of the energy function in its eigenbasis (Caponnetto and
De Vito, 2007). A fast decay of both the covariance spectrum and the target coefficients leads
to faster rates, which shows that random feature approximations enjoy a (limited) adaptivity to
the problem characteristics.

Sparsity of weights and representations. While kernel methods perform implicitly or
explicitly an ℓ2 regularization, ℓ1 regularization has also been classically studied, under the names
of lasso (Tibshirani, 1996) and basis pursuit (Chen et al., 2001). Though estimation is more
computationally challenging, ℓ1 regularization enjoys better approximation and generalization
properties by being adaptive to low-dimensional latent variables (Bach, 2017a), contrarily to
generic kernel methods. The ℓ1 penalty on the parameters corresponds to a variation norm
of the associated function, and the resulting approximation space can be characterized as a
reproducing kernel Banach space (Bartolucci et al., 2021). The minimization of this variation
norm also arises as the implicit bias of one-hidden-layer networks in some supervised classification
tasks (Chizat and Bach, 2020).

Rather than assuming a sparse prior on the parameters, one can also assume that the input
data admits a sparse representation, where the ordered amplitudes of the representation coef-
ficients have a fast decay. Eliminating the smallest coefficients then defines efficient adaptive
low-dimensional approximations, thus alleviating the curse of dimensionality. Sparse represen-
tations have a long history in computer vision (Mallat, 2008), from fixed curvelet tight frames
(Candès et al., 1999) or adaptive bandlet bases (Le Pennec and Mallat, 2005) to sparse coding
in learned redundant dictionaries (Olshausen and Field, 1997; Elad and Aharon, 2006).

Log-concave distributions. The assumptions outlined above are mostly targeting the ap-
proximation, generalization, and sometimes estimation errors in supervised learning. As ex-
plained in Section 1.1.3, unsupervised learning faces additional challenges when estimating pa-
rameters of or generating samples from high-dimensional probability distributions. The curse of
dimensionality can be lifted if the data probability distribution p is log-concave, or equivalently,
if the energy function E is convex.

First, maximum-likelihood estimation in a log-concave parametric class can be relaxed
(Koehler et al., 2022) to score matching (Hyvärinen and Dayan, 2005), which avoids the need
to compute normalizing factors. Second, log-concavity also allows escaping the curse when gen-
erating samples. For instance, the Metropolis-adjusted Langevin algorithm enjoys in this case
convergence guarantees that are polynomial in the dimensionality of x (Chewi, 2023) with an
algorithmic warm-start (Altschuler and Chewi, 2023).

In this work. We have presented several classical assumptions that have been used in the
literature to alleviate the curse of dimensionality. This leads to two questions: can they be used
to explain and understand the performance of deep convolutional neural networks? To what
extent does explicitly relying on these sources of structure allow recovering their performance?
In this dissertation, we will use numerical experiments to both investigate properties of deep
networks and evaluate the accuracy of constrained deep architectures.

The next sections present our results in various contexts, through the lens of the training
data (what are its properties?), the architecture (what is the role of its computations?), and

9



Chapter 1. Introduction

the optimization algorithm (what have the weights learned?). First, we show in Section 1.2
that image distributions can exhibit properties of log-concavity, smoothness, and locality when
they are factorized with a multiscale decomposition. Second, we present in Section 1.3 inves-
tigations on the role of the non-linearity in image classification architectures, showing that it
mainly computes invariants to spatial deformations with phase collapses. Third, we introduce in
Section 1.4 a probabilistic model of the learned weights of deep networks based on hierarchical
random-feature kernels.

1.2 Properties of wavelet conditional probability distributions

In this section, we show that image probability distributions can be factorized as a produce
of wavelet conditional distributions that are log-concave, smooth, and local, whereas the global
image distribution does not enjoy these properties. These properties can be leveraged to alleviate
the curse of dimensionality in image generative modeling.

We begin by explaining in Section 1.2.1 how both score-based diffusions and autoregressive
factorizations manage to reduce generative modeling to supervised learning. This is achieved
by decomposing the probability distribution of x into conditional distributions with tractable
estimation and generation but possibly intractable approximation and generalization. This
important observation implies that these four aspects should be considered together.

We introduce in Section 1.2.2 a framework in which all the above challenges can be tackled
simultaneously. It builds upon the prior work of Marchand et al. (2022), who showed that a class
of multiscale physical fields can be modeled with local conditional distributions at each scale,
thus taking care of the approximation and generalization errors. We show that these conditional
distributions are log-concave, which allows controlling the estimation and generation errors.

In Section 1.2.3, we show that the wavelet conditional distributions considered by Marchand
et al. (2022) also enjoy some of these properties in the case of natural images. We demonstrate
empirically that this factorization can be incorporated in score-based diffusions to achieve a linear
sampling complexity. It provides a theoretical justification for this approach, used extensively in
the literature. We further show that the distribution of face images, which is non-stationary and
has large-scale structure, can be approximated with stationary and local conditional distributions
at each scale. It leads to lower-dimensional score models that can be approximated with networks
with smaller receptive fields.

1.2.1 Score-based diffusions and autoregressive factorizations

We have presented the challenges posed by the curse of dimensionality in Sections 1.1.2 and 1.1.3.
The “unsupervised”-type issues arise when estimating normalizing factors and generating sam-
ples from probability distributions over high-dimensional variables. They can be tackled by de-
composing the image distribution p(x) into probability distributions that are either log-concave
or over low-dimensional variables. The “supervised”-type issues arise when learning approx-
imations of high-dimensional functions. They can be tackled when prior information allows
specifying low-dimensional parametric models of these distributions.

We explain in this section that the first type of issues can be solved without any prior assump-
tions. This is achieved by two approaches: score-based diffusions, which leverage log-concave
decompositions, and autoregressive factorizations, which leverage low-dimensional decomposi-
tions. In effect, they provide a reduction of unsupervised learning to supervised learning. As a
result, the challenges of Sections 1.1.2 and 1.1.3 should be considered together when studying
the curse of dimensionality in generative modeling.

We begin by reminding that log-concavity allows escaping the curse through a log-Sobolev in-
equality. We then explain that score-based diffusion models leverage a similar property through

10



Section 1.2. Properties of wavelet conditional probability distributions

a higher-dimensional lifting to distributions over paths. Finally, we highlight that an autoregres-
sive factorization also succeeds in escaping this curse, by implicitly assuming that the conditional
distributions can be accurately approximated.

Log-Sobolev inequality and log-concavity. The error introduced by modeling the true
data distribution p(x) = e−E(x) with the energy-based model pθ(x) = Z−1

θ e−Eθ(x) can be quan-
tified with the Kullback-Leibler divergence

KL(p ∥ pθ) = Ep[Eθ(x) + logZθ − E(x)] = Ep[Eθ(x)] + logZθ + cst, (1.6)

or the Fisher divergence1

FI(p ∥ pθ) = Ep
[1

2∥∇Eθ(x)−∇E(x)∥2
]

= Ep
[1

2∥∇Eθ(x)∥2 −∆Eθ(x)
]

+ cst. (1.7)

The latter does not depend on the normalizing factor Zθ and can thus be computed efficiently (up
to a constant). For exponential families, eq. (1.7) is even a quadratic function of the parameters
and can be minimized in closed form.

The Fisher divergence is however weaker than the Kullback-Leibler divergence, as quantified
by the log-Sobolev inequality (Gross, 1975; Markowich and Villani, 2000)

KL(p ∥ pθ) ≤
1
ρθ

FI(p ∥ pθ), (1.8)

where ρθ is the log-Sobolev constant of pθ. In general, ρθ decreases exponentially with the
dimensionality of x, but it is controlled when pθ is strongly log-concave, i.e., Eθ is strongly
convex (Bakry et al., 2014). A non-vanishing log-Sobolev constant implies that both parameter
estimation and sample generation can be solved efficiently.

First, eq. (1.8) shows that score matching leads to guarantees in the Kullback-Leibler diver-
gence. Its statistical efficiency is thus comparable to maximum-likelihood estimation (Koehler
et al., 2022) while being much lighter computationally.

Second, eq. (1.8) also implies an exponential convergence of the Langevin diffusion

dxt = −∇Eθ(xt)dt+ dwt (1.9)

where (wt) is a Wiener process. Indeed, a direct calculation shows that

d
dt KL(pt ∥ pθ) = −FI(pt ∥ pθ) ≤ −ρθ KL(pt ∥ pθ), (1.10)

where pt is the distribution of xt, which then converges exponentially fast towards pθ at a rate
at least ρθ (Markowich and Villani, 2000). With an appropriate discretization of eq. (1.9), it
leads to a polynomial sampling complexity (Chewi, 2023; Altschuler and Chewi, 2023).

Score-based diffusion models. Rather than modeling the probability distribution of x,
score-based diffusions build a model of sample paths (xt)t∈[0,T ] of a forward “noising” process:
for instance, starting from x0 = x, define

dxt = dwt, (1.11)

where (wt)t is a Wiener process, so that we have the conditional distributions

xt | (x0, . . . , xt−δ) ∼ N (xt−δ, δ Id). (1.12)
1Our notation differs from the conventional use by a factor 1/2 for convenience.

11



Chapter 1. Introduction

Figure 1.4: The backward “denoising” process of a score-based diffusion model maps white Gaussian
noise to the data probability distribution. The non-log-concave distribution is represented by its scores
along the diffusion path, by encoding relative amplitudes between disconnected modes at times where those
modes merge together.

Crucially, the law of the process (xt)t is also described by a backward “denoising” process,

dxt = −∇Et(xt)(−dt)− dw′
t, (1.13)

where (w′
t)t is a backward Wiener process (Anderson, 1982) and Et = − log pt is the energy

associated to the marginal distribution of xt in eq. (1.11). The backward process, illustrated
in Figure 1.4, is started from xT ∼ pT ≈ N (0, T Id) (for large T ) and depends on the scores
(∇Et)t. It means that when the stepsize δ vanishes,

xt−δ | (xt, . . . , xT ) ∼
δ→0
N (xt − δ∇Et(xt), δ Id). (1.14)

The joint distribution of (xt) is thus factorized as an infinite Markov product (over continuous
time t ∈ [0, T ]) of white Gaussian distributions.

A score-based diffusion model is defined by energy-based models (Eθ,t)t at each time t. Let
pθ be the distribution of x0 obtained from the backward diffusion

dxt = −∇Eθ,t(xt)(−dt)− dw′
t, (1.15)

started from xT ∼ N (0, T Id). Finally, let p̃ and p̃θ respectively be the joint distributions of the
sample paths (xt)t of eqs. (1.13) and (1.15). Then the data-processing inequality and a direct
calculation (Song et al., 2021a) imply that

KL(p ∥ pθ) ≤ KL(p̃ ∥ p̃θ) =
∫ T

0
FI
(
pt
∥∥ pθ,t)dt+ o(e−T ), (1.16)

which plays a similar role as the log-Sobolev inequality, but where the Fisher divergence has
to be considered at all times (compare eq. (1.16) with eq. (1.8)). As suggested by eq. (1.14),
score-based diffusion models thus automatically enjoy properties similar to log-concavity after
the lifting to distributions over paths.

First, eq. (1.16) provides a control on the model error in Kullback-Leibler divergence from
the score-matching error at all times, hence bypassing the issues associated with normalizing
factors.

Second, eq. (1.15) inherits the exponential convergence of eq. (1.11), and Chen et al. (2022b,a)
have shown that it can be discretized without blowing up score errors, leading to a total error
which is polynomial in the number of iterations, score matching loss, and data dimensionality.
Diffusion models thus reduce the problem of generative modeling of a distribution p to that
of estimating the scores (∇Et)t, which amounts to denoising (i.e., self-supervised learning of a
high-dimensional function) through the common denoising score matching formulation (Vincent,

12



Section 1.2. Properties of wavelet conditional probability distributions

2011; Kadkhodaie and Simoncelli, 2021). It shows that generative modeling is at least as easy
as learning the scores, or equivalently, that learning the scores is at least as hard as generative
modeling.

Though deep score networks have been shown to generate images of extremely high quality,
the extent to which they truly learn the scores of the data distribution is unclear, for two
reasons. First, practitioners have empirically optimized generation quality and efficiency rather
than data fidelity, and minimize a reweighted version of eq. (1.16) which puts less emphasis
on smaller times, leading to over-smoothed generated images (Kingma and Gao, 2023; Karras
et al., 2022). Smaller times are typically harder to model but capture the fine details of the data
probability distribution, which have empirically been found to dramatically alter the expected
model log-likelihood (Nichol and Dhariwal, 2021; Song et al., 2021a). Second, recent work has
evidenced that these deep score networks can memorize their training data (Carlini et al., 2023;
Somepalli et al., 2022), indicating a lack of generalization.

It is therefore of fundamental importance to understand the properties which allow learning
accurate score models. In this dissertation, we show as a step towards this goal that a multiscale
factorization of the probability distribution can lead to local and therefore low-dimensional score
models.

Autoregressive factorization. Another way to deal with the curse of dimensionality is to
reduce the dimensionality of the random variables. This can be achieved with a factorization of
the probability distribution of x ∈ Rd as products of one-dimensional conditional distributions

p(x) = p(x[1])
d∏
i=2

p(x[i] |x[1], . . . , x[i− 1]). (1.17)

This autoregressive factorization, which is classical in time series modeling, has also been used
to model images in deep learning (Van Den Oord et al., 2016). One is thus faced with a sequence
of one-dimensional conditional generative modeling problems, akin to supervised learning of the
conditional energy E(y|x).

First, a model pθ(x) is obtained with models pθi
(x[i] |x[1], . . . , x[i−1]), for which normalizing

factors can be straightforwardly computed because x[i] is one-dimensional.
Second, a sample x from pθ(x) can be generated iteratively by first sampling the first compo-

nent x[1] from pθ1
(x[1]), and iteratively the i-th component x[i] from pθi

(x[i] |x[1], . . . , x[i− 1]).
This approach has the advantage of breaking the curse of dimensionality, provided that one

can learn models of the conditional factors p(x[i] |x[1], . . . , x[i−1]). These conditional factors are
functions of high-dimensional inputs due to the a priori dependence between the components
of x. Indeed, the conditional density may have a much more complicated functional form
than the joint distribution p(x). Equation (1.17) can still be used if it is known a priori that
the conditional distributions p(x[i] |x[1], . . . , x[i − 1]) assume a “simple” functional form. For
instance, Markov random fields (Geman and Geman, 1984) assume conditional independence
properties between components of x, leading to local and thus low-dimensional conditional
densities, as explained in Section 1.1.5. Such models assume that long-range dependencies arise
from short-range interactions. This assumption is however too restrictive to model complex
image distributions that can have long-range interactions.

In this dissertation, we rather consider factorizations obtained by conditioning over spatial
scale rather than spatial position, leading to local interactions at each scale.

1.2.2 Conditional log-concavity of physical fields

We have explained in Section 1.2.1 that it is necessary to take into account the approximation
and generalization challenges together with the estimation and generation challenges that are
specific to unsupervised learning. Lifting the curse of dimensionality thus requires a factorization

13



Chapter 1. Introduction

Figure 1.5: The wavelet conditional factorization of Marchand et al. (2022) generates a high-resolution
image by generating a coarse approximation and then conditionally generating detail coefficients in the
wavelet domain.

into probability distributions that are either log-concave or over low-dimensional variables, and
admit low-dimensional parametric models. The wavelet conditional factorization of Marchand
et al. (2022) has been shown to provide such low-dimensional parametric models of multiscale
physical fields. We build upon it by additionally demonstrating that the wavelet conditional
distributions are log-concave. This latter property allows controlling simultaneously all sources
of errors when combined with the former one.

Wavelet conditional factorization. An image x = x0 can be decomposed with a wavelet
transform as “detail coefficients” (x̄j)j≤J at each scales and a coarse approximation xJ of x at
the largest scale 2J . The wavelet coefficients (x̄j+1, x̄j+2, . . . , x̄J) and the coarse approximation
xJ can be combined to define an approximation xj of x at the scale 2j . The wavelet conditional
factorization introduced by Marchand et al. (2022) writes

p(x) = p(x̄1, . . . , x̄J , xJ) = p(xJ)
J∏
j=1

p(x̄j | x̄j+1, . . . , x̄J , xJ) = p(xJ)
J∏
j=1

p(x̄j |xj). (1.18)

Such a factorization means that one can first generate a sample at a coarse resolution and
then perform “generative upsampling” iteratively by conditionally generating details. This is
illustrated in Figure 1.5.

This factorization has two desirable properties. First, if the image distribution p(x) satisfies
a self-similarity property, then the conditional distributions over scales p(x̄j |xj) have a similar
functional form, as they are directly related to the marginal coarser-scale distributions p(xj−1).
This idea is at the heart of the renormalization group in statistical field theory (Wilson, 1971),
which inspired the probability factorization of Marchand et al. (2022). Second, long-range
dependencies may be more efficiently represented as a short-range interactions at each scale,
leading to a cascade of conditional Markov random fields rather than a joint Markov random
field, as done by Marchand et al. (2022). The probability distribution p(x̄j |xj) encode the
interactions between wavelet coefficients at different scales, but represented at the same spatial
resolution. Their short-range interactions can thus thus be likened to operators that apply along
channels inside a convolutional neural network.

However, the factors p(x̄j |xj) are probability distributions over high-dimensional variables,
and thus suffer from issues with the estimation of normalizing factors and generation of samples.
We now explain that these factors can be made log-concave by generalizing the probability
decomposition.

Conditionally log-concave factorizations. We introduce in Chapter 2 a generalization of
both eqs. (1.17) and (1.18) with arbitrary orthogonal projectors. We prove that if each con-

14



Section 1.2. Properties of wavelet conditional probability distributions

ditional distribution p(x̄j |xj) is conditionally log-concave, then one obtains both learning and
sampling algorithms with a polynomial complexity, provided that the conditional distributions
can be modeled with low-dimensional exponential families. Combined with the multiscale local-
ity shown in Marchand et al. (2022), it provides a complete control over all sources of error.

Conditional log-concavity arises when the energy E(x) is dominated by quadratic interac-
tions, in the following sense: write

E(x) = 1
2x

TKx+ V (x), (1.19)

with K a positive symmetric matrix representing the “kinetic energy” and V is a possibly non-
convex non-quadratic function representing the “potential energy”. The log-concavity of p is
equivalent to the convexity of E, or equivalently to the condition ∇2E(x) = K +∇2V (x) ≽ 0.
The large eigenvectors of K thus define directions where the energy is a priori “more convex”. For
multiscale stationary image distributions, K is a convolution whose eigenvalues have a power-law
growth at high frequencies.

It is proved in Chapter 2 that the φ4 energy from statistical field theory is indeed convex over
a small-enough high-frequency band when conditioned on the remaining lower-frequency band. A
log-concave conditional distribution p(x̄1|x1) can then be obtained by considering wavelet packet
projectors, which define a narrower frequency decomposition x = x0 7→ (x̄1, x1) than the dyadic
splitting of the wavelet transform. The argument can then be iterated by replacing p(x0) with
p(x1) and exploiting the self-similarity over scales of the φ4 energy at the critical temperature.
We further demonstrate numerically that cosmological weak-lensing images (Bartelmann and
Schneider, 2001; Kilbinger, 2015) also have a conditionally log-concave distribution. It shows
that complex non-log-concave distributions p(x) may still be written as a product of log-concave
conditional distributions.

Contributions. This approach provides an efficient generative modeling algorithm where all
sources of errors are explicitly controlled. It lifts the curse of dimensionality for multiscale
physical fields, where prior information guarantees conditional log-concavity and provides low-
dimensional parametric models. This is a promising first step towards defining more general
classes of probability distributions that could apply to natural images.

1.2.3 Conditional locality and regularity of natural images

In the more challenging setting of natural images, it is less clear that the conditional distri-
butions p(x̄j |xj) are log-concave or local. However, score-based diffusion models still rely on
a multiscale iterative approach similar to Marchand et al. (2022) to generate high-resolution
images (Saharia et al., 2021; Ho et al., 2022; Dhariwal and Nichol, 2021). We explain that the
multiscale factorization enables the use of local score networks with limited receptive fields, thus
alleviating the curse of dimensionality. Additionally, it leads to a reduced sampling complexity
from quadratic to empirically linear in the image dimensionality.

Wavelet score-based diffusion models. We introduce in Chapter 3 wavelet score-based
diffusion models (referred to as wavelet score-based generative models in the main text). They
are obtained by first factorizing the probability distribution p(x) over scales as in eq. (1.18).
Each conditional factor p(x̄j |xj) is then approximated with a conditional score-based diffu-
sion model. A wavelet score-based diffusion model thus estimates the scores of noisy wavelet
coefficients conditioned on clean low-resolution images. The probability distribution p(xJ) is
low-dimensional and is also approximated with a score-based diffusion model. The model is
illustrated in Figure 1.6. It is equivalent to the iterative approaches of Saharia et al. (2021);
Ho et al. (2022); Dhariwal and Nichol (2021), but it relies explicitly on the wavelet conditional
distributions p(x̄j |xj) as opposed to the degenerate conditional distributions p(xj−1|xj).

15



Chapter 1. Introduction

Figure 1.6: A wavelet score-based diffusion model combines score-based diffusion models (Figure 1.4)
with a wavelet conditional factorization (Figure 1.5). Each factor in the decomposition of p(x) is estimated
with a dedicated score-based diffusion model. Conditional score-based diffusion models learn to denoise
wavelet detail coefficients while exploiting the information contained in the clean image at the same
resolution. Equivalently, this approach can be seen as a reparametrization of the time axis of score-based
diffusion models, where iterations at large times t ≈ T are efficiently approximated with coarse-resolution
images.

Fast generation with conditionally regular distributions. We show in Chapter 3 that
the Lipschitz constant of the score controls the sampling complexity of score-based diffusion mod-
els. We explain that the scores of the conditional distributions p(x̄j |xj) have smaller Lipschitz
constants than the global distribution p(x). This is proved for stationary Gaussian distributions
with a power spectrum that follows a power law. It is also demonstrated numerically for face
images by showing that wavelet score-based diffusion models have a linear time complexity, as
opposed to global score-based diffusion models of the entire image x. The informal reasoning
is that a large conditioning number of the data covariance leads to irregular scores, and that
covariance of image distributions are preconditioned in a wavelet basis. These results provide
theoretical grounding for the use of multiscale approaches in score-based diffusion models.

Low-dimensional estimation with conditional Markov random fields. We then tackle
in Chapter 4 the issue of score approximation. We prove that restricting the receptive field of
the score network is equivalent to assuming a Markov random field model on the probability
distribution p(x), as well as the probability distributions of data contaminated with Gaussian
white noise of any variance. We show that this Markov assumption is not satisfied by the
global distribution p(x), but is approximately satisfied by the wavelet conditional distributions
p(x̄j |xj) in the case of face images. Additionally, the wavelet conditional distributions p(x̄j |xj)
are stationary, in the sense that they are invariant to simultaneous translations of both x̄j and xj ,
as opposed to the global distribution p(x) which is non-stationary. It thus leads to a multiscale
stationary conditional Markov random field model, which alleviates the curse of dimensionality
when learning score approximations.

Contributions. We demonstrate empirically that wavelet conditional factors of some natural
image distributions are approximately stationary and local, and are amenable to faster sampling
with score-based diffusion models. It is a first step in the study of the properties of the scores of
natural image distributions, which might lead to a better understanding of the approximation
and generalization properties of score networks.

1.3 Non-linear operators for image classification
In this section, we investigate the role of the non-linearity in deep convolutional neural networks
trained on image classification. We consider two types of operators studied in previous works:

16



Section 1.3. Non-linear operators for image classification

thresholdings in sparse representations, and phase collapses of wavelet coefficients. We inves-
tigate whether these mechanisms are relevant to understand the classification performance of
deep convolutional networks. We show that phase collapses are both necessary and sufficient to
reach high classification accuracies. This result allows defining more constrained approximation
classes of the conditional energy E(y|x) with structured architectures.

We begin by explaining in Section 1.3.1 how non-linearities may be classified according to
their separation and concentration properties, of which soft-thresholding and phase collapses are
characteristic examples. We then detail their respective properties in Sections 1.3.2 and 1.3.3.

1.3.1 Separation and concentration in deep networks

We review empirical results on the behavior of deep networks and introduce the distinction
between separation and concentration operators.

Neural collapse. Image classification has been empirically solved by deep convolutional neu-
ral networks, with an accuracy that has improved with deeper networks (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2015; He et al., 2016). Empirical observations have further shown that
the accuracy of a linear probe classifier improves across layers (Zeiler and Fergus, 2014; Oyallon,
2017; Papyan, 2020), so that each layer contributes to the final objective. This calls for a study
of the principles by which a non-linear layer can improve classification accuracy.

The accuracy of a linear classifier relies on the fact that input data points for different classes
are confined to linearly separated regions. This can be achieved for instance by imposing that
the means of each class are well separated, i.e., their distance is larger than the typical within-
class variance. In fact, it has been observed that hidden representations at the last layer of
deep networks may undergo a “neural collapse” (Papyan et al., 2020), where class means are
maximally separated as the vertices of an equiangular tight frame, while within-class variance
vanishes.

These empirical observations show that the non-linear operations in deep network layers
progressively increase the linear separability of class means while concentrating within-class
variance. What is the role of the network non-linearity in this phenomenon?

Separation and concentration. We introduce in Chapter 5 and refine in Chapter 6 an
empirical distinction between two types of operators: those that separate class means on the
one hand, and those that concentrate within-class variance on the other hand. This distinc-
tion is epitomized by even and odd non-linearities, of which every non-linearity is a linear
combination. We shall in particular consider the absolute value |·| and the soft-thresholding
ρλ(t) = sgn(t)ρ(|t| − λ) where ρ denotes the ReLU and λ > 0 is a positive threshold. These two
non-linearities are archetypal, in the sense that the absolute value collapses the sign and pre-
serves the amplitude, while applying a soft-thresholding preserves the sign and collapses small
amplitudes. They roughly correspond to the even-odd decomposition of a ReLU with positive
bias

ρ(t− λ) = 1
2 |ρλ(t)|+ 1

2ρλ(t), (1.20)

as its even part is an absolute value (composed with a soft-thresholding) and its odd part is a
soft-thresholding. A ReLU network may thus implement and rely on both of these non-linearities.

The following sections detail the properties of these two characteristic non-linearities and
their role towards neural collapse. We explain in Section 1.3.2 that a soft-thresholding can
concentrate “additive” within-class variability by leveraging a sparse decomposition of the class
means. In contrast, we illustrate in Section 1.3.3 how an absolute value can separate class means
by collapsing “multiplicative” within-class variability arising from a group. These two non-
linearities can increase the Fisher ratio (Fisher, 1936; Rao, 1948), which measures the ratio of the

17



Chapter 1. Introduction

Figure 1.7: Comparison between soft-thresholding and absolute value/complex modulus non-linearities.
Top: behavior on scalar input. Middle: idealized behavior on points from two classes (green and red),
visualized in two dimensions. Bottom: behavior on high-dimensional sparse vectors.

class mean distance and the within-class variance, and thus both may increase the classification
accuracy, though we will see that they are not equivalent. Their properties, detailed in the next
two sections, are summarized in Figure 1.7.

1.3.2 Concentration with thresholdings in sparse representations

We study non-linear operators based on soft-thresholdings through a connection to sparse coding.
We review the different flavors of sparse-coding operators, and highlight that a single soft-
thresholding step already performs concentration of within-class variance under appropriate
hypotheses.

Sparse coding. Consider a dictionary D ∈ Rd×m composed of m “atoms” (elements) in Rd.
The ℓ1 sparse coding problem (Tibshirani, 1996; Chen et al., 2001) consists in computing

zD,λ(x) = arg min
z∈Rm

1
2∥x−Dz∥

2
2 + λ∥z∥1, (1.21)

for an input x ∈ Rd, where λ > 0 is a threshold. The solution to this minimization problem
can be computed with iterative soft-thresholding operations (Daubechies et al., 2004; Beck and
Teboulle, 2009; Jiao et al., 2017). The number of iterations depends on the mutual coherence of
the dictionary D, which characterizes its redundancy (Donoho and Elad, 2003). The dictionary
D can be learned in a supervised way to maximize classification accuracy (Mairal et al., 2009,
2011) and can be incorporated in a network by unrolling the iterations of an optimization
algorithm computing eq. (1.21) (Gregor and LeCun, 2010; Liu and Chen, 2019). In effect, the
map x 7→ zD,λ(x) is then a non-linear operator that can be used in a deep network. Depending
on the use case, it comes in different flavors, which we now enumerate.

18



Section 1.3. Non-linear operators for image classification

Embedding versus denoising. The non-linear operator zD,λ can separate close directions, as
it can map correlated vectors to orthogonal vectors with non-overlapping supports. In contrast,
the non-linear operator D zD,λ re-projects the sparse code to the input space and computes an
approximation of the input x, as used in denoising by soft-thresholding (Donoho, 1995).

Explaining away versus bagging. The non-linear operator zD,λ can exploit the redundancy
(coherence) of the dictionary D to perform a more complex operation. Redundant dictionaries
require more iterations to compute the sparse code zD,λ(x), where the different atoms in D
interact and compete to “explain away” the input x (Gregor and LeCun, 2010). In contrast, one
can limit these computations to a single iteration, recovering a soft-thresholding

ẑD,λ(x) = ρλ(DTx). (1.22)

This expression is equal to zD,λ(x) if D is orthogonal, but can also be used for more general
dictionaries such as tight frames. The denoising version Dρλ(DTx) can then be interpreted as
a form of bagging by averaging denoised estimates computed in different orthogonal bases. The
different levels of redundancy of the dictionary and their associated complexity of computing zD,λ
are characteristic of the evolution of sparse representations in signal processing, from wavelet
orthogonal bases to the curvelet tight frame to the bandlet best-basis search algorithm.

Non-negative sparse codes. A final variant on the sparse-coding non-linear operator is that
eq. (1.21) can be modified to compute a non-negative sparse code

z+
D,λ(x) = arg min

z∈Rm
+

1
2∥x−Dz∥

2
2 + λ∥z∥1. (1.23)

This variant has been used in several works that interpret iterations on ReLUs and linear oper-
ators in deep networks as computing non-negative sparse codes (Sun et al., 2018; Sulam et al.,
2018, 2019; Mahdizadehaghdam et al., 2019; Zarka et al., 2020). The solution of eq. (1.23)
can be computed similarly to the solution of eq. (1.21) by replacing soft-thresholdings ρλ(t) by
biased ReLUs ρ(t− λ) in the iterations of the optimization algorithm. However, as announced
in Section 1.3.1 and will be detailed in Section 1.3.3, this breaking of the sign symmetry confers
very different properties to the non-linear operator z+

D,λ. We shall therefore focus on soft-
thresholding-based sparse coding in this dissertation.

Prior work on sparse coding in deep networks. We have presented several non-linear
operators based on soft-thresholdings. Which properties of these sparse-coding non-linearities
are useful for classification and what is their role in producing a neural collapse? This line of
research was started with a numerical investigation in the prior work of Zarka et al. (2020).
The authors show that applying the non-linear operator z+

D,λ on top of the scattering transform
(Mallat, 2012; Bruna and Mallat, 2013) followed by a multi-layer perceptron classifier allows
reaching the classification performance of AlexNet (Krizhevsky et al., 2012) on the ImageNet
dataset (Russakovsky et al., 2015). Additionally, z+

D,λ can be replaced with D z+
D,λ at a neg-

ligible cost in accuracy. Further experiments done by the authors (communicated in personal
correspondence, but some are reported in Zarka (2022, Chapter 3)) show that the non-negativity
constraint can be dropped, and that a single thresholding iteration is enough to capture most
of the accuracy improvements. The sparse-coding operation of eq. (1.21) is thus reduced to the
operator DρλDT in the setting of Zarka et al. (2020). It thus remains to assess the generality
of these findings (do they hold in other architectures with higher accuracies?) and understand
the properties of the operator DρλDT for classification.

19



Chapter 1. Introduction

In this work. In order to understand the properties of thresholdings for classification, we
introduce in Chapter 5 a stylized clutter model, which assumes that each class is distributed as
Gaussian mixture. If the means of each mixture component are efficiently approximated in an
orthogonal dictionary D, we prove that the non-linear soft-thresholding operator DρλDT con-
centrates the variance of each mixture component while preserving the separation between their
means. This theorem provides a justification for the use of sparsity-inducing non-linearities in
image classification, without the need for explaining away between dictionary atoms. It shows
that a soft-thresholding reduces “additive” within-class variability by leveraging a sparse repre-
sentation of separated class means. The operator DρλDT can then be used in a deep network
in conjunction with other operators that separate class means. This is validated numerically in
the learned scattering architecture of Chapter 5, which reaches the accuracy of ResNet-18 (He
et al., 2016) on ImageNet. The properties of DρλDT are further examined and contrasted with
phase collapse operators in the next section.

1.3.3 Separation with phase collapses of wavelet coefficients

The previous section explained how a soft-thresholding can concentrate “additive” within-class
variability. It however requires the class means to be separated. We explain that this is usually
not the case due to geometric within-class variability, which creates stationary phases and col-
lapses all class means to zero. This “multiplicative” within-class variability is concentrated with
a complex modulus, which can separate class means. We detail this mechanism and compare
its properties with soft-thresholdings as a non-linearity in image classification.

Translation variability and stationary phases. Image classes are typically stationary, in
the sense that the distribution of x is invariant to translations when conditioned on a given class
y. It means that translations give rise to within-class variability. This translation variability is
best understood in the Fourier domain, where it leads to stationary complex phases. This implies
that class means are zero for non-zero frequencies, as x̂(ω) has a circularly-symmetric distribution
when conditioned on y for a frequency ω ̸= 0. Group variability is therefore of multiplicative
nature due to its representation as phase shifts. This multiplicative variability prevents class
means from being separated. It follows that to improve linear classification accuracy, the non-
linearity must (at least partially) collapse these stationary phases, which may separate class
means.

We have focused on translations for simplicity of exposition, but this discussion can be gen-
eralized to other groups by considering generalized Fourier transforms defined from irreducible
representations of the group (see, e.g., Cohen et al., 2018; Kondor et al., 2018, for rotations in
R3).

Phase collapses and the scattering transform. The phase collapse phenomenon is used
iteratively by the scattering transform (Mallat, 2012). It considers variability arising from the
deformations rather than translations, and thus replaces the Fourier transform with the wavelet
transform. A deformation of the input image is approximately decomposed with a wavelet filter
as a spatially-varying phase and a larger-scale deformation. A complex modulus then eliminates
this phase, thus creating approximate invariants to small-scale deformations. Invariants to
larger-scale deformations are obtained by iterating this process with another set of wavelet
filters and complex moduli. The scattering transform thus realizes a “non-linear hierarchical
diagonalization” of deformations, which are represented by a cascade of spatially-varying phases
at all scales before being collapsed.

Comparing thresholdings and phase collapses. The distinction between even and odd
non-linearities made in Section 1.3.1 can be generalized in the complex domain to decompositions

20



Section 1.3. Non-linear operators for image classification

Figure 1.8: The learned scattering architecture introduced in Chapter 6. It iterates phase collapses ρW ,
where W is a spatial convolution with predefined wavelet filters and ρ(z) = (|z|, z) is a modulus with
skip-connection, and learned projectors (Pj)j≤J that apply over channels only.

into phase harmonics (Mallat et al., 2019). Phase-harmonic non-linearities of order k ∈ Z are
such that ρ(eiαz) = eikαρ(z), and any complex non-linearity can be decomposed uniquely as a
sum of phase-harmonic non-linearities of all orders. We will consider only phase harmonics of
order 0 and 1, as higher-order phase harmonics accelerate the phase and are thus unstable when
iterated, while phase harmonics with negative orders are redundant as they can be obtained by
complex conjugation. Compared to the discussion in Section 1.3.1, the sign is then replaced by
the complex phase, the absolute value by the complex modulus, and the soft-thresholding by a
complex soft-thresholding ρλ(z) = ρ(|z| − λ)eiφ(z) where φ(z) is the phase of z ∈ C.

What is the relationship between these two qualitatively opposite non-linear mechanisms?
On the one hand, the modulus is a phase harmonic of order 0, which collapses the phase and
preserves the amplitude. It separates class means and concentrates multiplicative within-class
variability by diagonalizing a group action. On the other hand, the soft-thresholding is a phase
harmonic of order 1, which preserves the phase and collapses small amplitudes. It concentrates
additive within-class variability by leveraging a sparse representation of separated class means.
A common point is that in the case of images, both non-linearities should be computed in the
wavelet domain, leveraging respectively its diagonalization and sparsity properties. Indeed, it
can be expected more generally that diagonalizing geometric variability is required to obtain a
sparse representation, in order to avoid that a small deformation dilutes the large coefficients and
greatly increases the support size. However, a major difference between these two mechanisms
is that they have different behaviors when iterated.

Iterating non-linearities. We show in Chapter 6 that a sparse representation necessarily
concentrates the entropy of the process in the phases of the coefficients. If the non-linearity
preserves these phases, such as a soft-thresholding, then the process cannot be further “sparsi-
fied”. It implies that applying a second soft-thresholding in a learned dictionary would not lead
to accuracy improvements, as observed numerically by Zarka (2022). This maximal-entropy
property is consistent with the observations that the phases of wavelet coefficients tend to be
stationary and are approximately independent (Wainwright and Simoncelli, 1999).

In contrast, iterating phase collapses leads to improved classification accuracies, as evidenced
by the scattering transform (Bruna and Mallat, 2013). Phase collapses eliminate the entropy
contained in the phases, and allow extracting linearly the support of large amplitude coefficients.
The geometric regularity of this support set across space, scale, and orientation can then be
exploited by the filters at the next layer to obtain an even sparser representation. It shows that
iterating sparsity requires collapsing the phases of the intermediate sparse codes. The properties
of soft-thresholdings and phase collapses are summarized in Figure 1.7.

Numerical experiments. We define in Chapters 5 and 6 learned scattering network archi-
tectures whose non-linearities can be attributed to only one of the two opposite mechanisms

21



Chapter 1. Introduction

presented above. The architectures leverage prior information by using fixed wavelet filters
across space and learning only filters across channels. They reach the same accuracy as ResNet-
18 on the ImageNet dataset despite having fewer layers.

In addition to the theoretical considerations above, we compare experimentally the two
mechanisms in Chapter 6 and demonstrate that phase collapses are both necessary and sufficient
to reach high classification accuracies, while soft-thresholdings or any other phase harmonic of
order 1 are neither necessary nor sufficient. This is demonstrated on both learned scattering
networks, with complex wavelet filters, and ResNet-18, with real-valued learned filters.

Contributions. Our results show that the principal non-linearity mechanism used by deep
networks to increase linear classification accuracy is the iteration of phase collapses of wavelet
coefficients. The resulting learned scattering network, illustrated in Figure 1.8, can then be
seen as a structured architecture with a maximum amount of components defined from prior
information and minimal learning.

1.4 A model of network weights with aligned random features
The previous section has shown that prior information can be leveraged to define non-linear
functional blocks and structure deep network architectures. However, it remains to learn weight
matrices acting along channels. We thus turn to the study the learned weights in deep networks
in order to understand their mathematical structure and the properties of the associated learned
representations.

This has been the focus of a series of prior works that aimed at understanding the perfor-
mance gap between the scattering transform and deep convolutional networks. Following the
early successes of methods based on group invariants, a first line of research devised extensions
of the scattering transform to build invariants to larger groups, incorporating rotations and
scalings (Sifre and Mallat, 2013; Oyallon and Mallat, 2015) or frequency modulations in audio
(Andén et al., 2015). A second line of work then studied empirically the learned operators
(Oyallon et al., 2017; Oyallon, 2017), trying to characterize them in terms of computing learned
invariants to unknown symmetry groups, as suggested by Mallat (2016).

In this dissertation, we adopt a different direction, and rather follow the random-feature ker-
nel viewpoint developed in the literature. We begin by presenting this viewpoint in Section 1.4.1.
We then enumerate several attempts at extending it to trained networks in Section 1.4.2. We
introduce our own contributions in Section 1.4.3, which are based on the idea of random feature
alignment. They are the key ingredient in the proposed probabilistic model of trained weights.

1.4.1 Random-feature kernels in deep networks

We review in this section the convergence properties of random-feature networks and their
associated hierarchical kernels.

Random-feature networks. Networks are typically initialized with random weights. At
initialization, deep networks thus compute random hidden representations ϕ̂j(x) ∈ Rdj defined
iteratively at each layer j by

ϕ̂j(x) =
(
ρ(⟨wj,i, ϕ̂j−1(x)⟩)

)
i≤dj

with i.i.d. wj,i ∼ N (0, Id), (1.24)

starting from ϕ̂0(x) = x, where ρ is a pointwise non-linearity such as ReLU. Such networks com-
pute random features (Rahimi and Recht, 2007). Random-feature networks can already achieve
a performance comparable to trained networks on simple tasks, provided that the architecture
(non-linearities, pooling operations, etc) is appropriately designed (Jarrett et al., 2009; Pinto
et al., 2009).

22



Section 1.4. A model of network weights with aligned random features

Random-feature kernels. The random feature maps ϕ̂j define random kernels k̂j at each
layer,2

k̂j(x, x′) = ⟨ϕ̂j(x), ϕ̂j(x′)⟩ = 1
dj

dj∑
i=1

ρ(⟨wj,i, ϕ̂j−1(x)⟩) ρ(⟨wj,i, ϕ̂j−1(x′)⟩). (1.25)

These kernels depend on the particular realization of the random features
(
wj,i

)
j,i, but when

the widths
(
dj
)
j increase to infinity they converge to a deterministic kernel (Rahimi and Recht,

2007; Daniely et al., 2016), defined by

kj(x, x′) = ⟨ϕj(x), ϕj(x′)⟩ = Ewj∼N (0,Id)
[
ρ(⟨wj , ϕj−1(x)⟩) ρ(⟨wj , ϕj−1(x′)⟩)

]
, (1.26)

where ϕj is an associated kernel embedding or feature map (Aronszajn, 1950). For Gaussian
white initializations wj,i ∼ N (0, Id), this kernel is a dot-product kernel and admits a closed-
form expression for several non-linearities ρ including ReLU (Cho and Saul, 2009; Daniely et al.,
2016).

These kernels are sometimes referred to as “conjugate” kernels (Fan and Wang, 2020), by
opposition to the neural tangent kernel. They also arise in the equivalence between random
neural networks and Gaussian processes. Indeed, the random projections ⟨wj+1,i, ϕ̂j(x)⟩ converge
in the infinite-width limit to a zero-mean Gaussian process whose covariance kernel is given by
eq. (1.26) (Neal, 1996; Williams, 1996; Lee et al., 2018; Matthews et al., 2018).

The analysis of random-feature approximations (Rahimi and Recht, 2008; Bach, 2017b; Rudi
and Rosasco, 2017; Mei et al., 2022; Schröder et al., 2023) allows linking the behavior of finite-
width networks at initialization to properties of the deterministic kernels in eq. (1.26). Com-
puting their spectrum (Scetbon and Harchaoui, 2021) then allows studying effects of the archi-
tecture such as the benefits (or lack thereof) of depth (Bietti and Bach, 2021). The behavior
of the asymptotic kernels was also studied in the signal propagation literature (starting with
Poole et al., 2016; Schoenholz et al., 2017), leading to measures of trainability of the network at
initialization.

Hierarchical kernel models. Several works in the literature have introduced hierarchical
kernel models inspired from neural network architectures with random features, following the
work of Cho and Saul (2009). Mairal et al. (2014) introduce kernels obtained from the composi-
tion of patch extractions, dot-product kernel embeddings, and pooling operators. The stability
to deformations properties of these kernels are studied in Bietti and Mairal (2019). One can then
incorporate projections in learned subspaces in-between the kernel embeddings (Cho and Saul,
2009; Mairal, 2016). A correspondence can be established between convolutional architectures
and such hierarchical kernels (Anselmi et al., 2015).

1.4.2 Evolution of kernels and training dynamics

While the kernel viewpoint has been fruitful to describe networks at initialization, it is not clear
to what extent trained networks may be described by a (possibly data-dependent) kernel. We
now describe several prior attempts towards describing trained networks, and relevant numerical
observations in the literature.

The neural tangent kernel in the lazy regime. Depending on the scalings of the network
initialization, renormalization factors, and learning rate (Yang and Hu, 2021), the behavior of
some trained networks remains described by a different kernel (the neural tangent kernel, Jacot
et al., 2018; Lee et al., 2019b), which becomes deterministic and fixed during training in the
considered infinite-width limit. This is the so-called lazy regime (Chizat et al., 2019), which

2We sometimes add or omit normalizing factors such as d
−1
j to lighten the notations.

23



Chapter 1. Introduction

does not account for the performance of trained deep networks on complex tasks (Lee et al.,
2020; Geiger et al., 2020).

Evolution of empirical kernels in the feature-learning regime. The lazy regime has
been opposed to a rich or feature-learning regime, in which the conjugate and tangent kernels
evolve during training. Several works have studied the evolution of empirical conjugate kernels
(Fischer et al., 2022; Seroussi et al., 2023) or empirical tangent kernels (Shan and Bordelon,
2021; Atanasov et al., 2022). They report an alignment period in which the eigenvectors of the
kernel move rapidly, followed by an amplification along the first kernel principal components.
This is consistent with numerical experiments (Fort et al., 2020; Baratin et al., 2021). A critical
empirical observation made by Raghu et al. (2017); Kornblith et al. (2019) is that the empirical
conjugate kernels learned by two independently trained networks are increasingly similar when
the network width increases, suggesting a convergence to a deterministic kernel in the infinite-
width limit.

Mean-field limit. The feature-learning regime is however more challenging to study and
has thus only been characterized in simplifying cases. In particular, one-hidden-layer networks
have been studied in the mean-field infinite-width limit (Chizat and Bach, 2018; Mei et al.,
2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020). The network is
characterized with the empirical neuron weight distribution of the first layer

π̂1 = 1
d1

d1∑
i=1

δw1,i
. (1.27)

π̂1 converges in the infinite-width limit to a deterministic measure π1 which evolves during train-
ing as a Wasserstein gradient flow. The network can thus be described with a time-dependent
random-feature kernel as in eq. (1.26) whose weight distribution changes with time. The limit
distribution at the end of training can then be characterized as minimizing a total-variation
norm (Chizat and Bach, 2020).

Statistical properties of trained weights. Despite several attempts, the generalization
of the mean-field limit to deeper networks remains elusive (Sirignano and Spiliopoulos, 2022;
E and Wojtowytsch, 2020; Nguyen and Pham, 2020; Chen et al., 2022c; Yang and Hu, 2021).
Several papers have thus resorted to empirical studies of the weight statistics of trained networks,
especially through their singular value distributions (Martin and Mahoney, 2021; Thamm et al.,
2022). These measurements recover the observation that deep networks learn low-rank weight
matrices (Denil et al., 2013; Denton et al., 2014; Yu et al., 2017).

1.4.3 Alignment convergence: the rainbow model

The works reviewed in Sections 1.4.1 and 1.4.2 show that the study of neural networks through
the prism of their associated kernels is very fruitful. In particular, the law of large numbers
plays a central role by implying a convergence of the conjugate and tangent random-feature
kernels . The optimization and generalization properties of deep networks can then be linked
to properties of these kernels. Theoretical analyses have been restricted to either untrained or
shallow networks, but empirical observations suggest that this viewpoint may be generalized.

We now present an extension of this viewpoint to trained deep networks which is detailed in
Chapter 7. The central ingredient is the empirical observation (following Kornblith et al. (2019))
that hidden activations ϕ̂j converge up to a rotation, and that this rotation can be absorbed by
the next layer weights. This observation motivates a conjecture for a static mean-field limit of
deep networks. It then leads to a probabilistic model of network weights.

24



Section 1.4. A model of network weights with aligned random features

A conjectured multi-layer static mean-field limit. We now informally introduce a con-
jecture for a multi-layer generalization of the mean-field limit, in order to motivate the model
presented in the next paragraph. This conjecture is inspired by the idea that that deep networks
have an internal rotation symmetry at each layer, but are otherwise entirely determined up to
this symmetry, as will be confirmed in our numerical experiments. More precisely, the conjecture
states that after an alignment procedure, both activations and weight distributions converge in
the infinite-width limit. The arbitrary rotations describing the trained network arise from the
stochasticity of the training process (coming from the random initialization, the batch ordering
in SGD, and the data augmentation).

The conjectures assumes that for each layer j, there exists a deterministic feature map ϕj
defined in a separable Hilbert space Hj and a partial isometry Aj : Rdj → Hj that depends on
ϕ̂j such that

Aj ϕ̂j → ϕj , (1.28)
in mean square distance when the widths of the network increase to infinity. The partial isometry
Aj computes an alignment of ϕ̂j to ϕj and is defined by minimizing the mean square error

min
A

T
j Aj=Iddj

Ex
[
∥Aj ϕ̂j − ϕj∥

2
Hj

]
. (1.29)

For convenience, we also define ϕ̂0(x) = ϕ0(x) = x and A0 = Id with H0 = Rd0 .
The alignment matrices are used to define the aligned layer operations Aj ρWj A

T
j−1, which

iteratively compute the aligned activations Aj ϕ̂j(x). We thus define the aligned empirical weight
distributions π̂j defined from the aligned weight matrices WjA

T
j−1:

π̂j = 1
dj

dj∑
i=1

δAj−1wj,i
, (1.30)

where the (wj,i)i≤dj
are the dj rows of Wj . The conjecture assumes that for each layer j, π̂j

converges to a distribution πj defined on Hj−1:
π̂j → πj , (1.31)

in mean-square Wasserstein-2 distance when the layer widths increase to infinity.
The two statements of the conjecture, namely eqs. (1.28) and (1.31), are not independent. We

sketch an informal reasoning which derives by induction the convergence of aligned activations
and weight distributions at all layers. The induction is initialized with A0ϕ̂0 → ϕ0 which holds
by definition. Assume that Ajϕ̂j−1 → ϕj−1. By analogy with the mean-field limit of one-hidden-
layer-networks, it seems natural that it implies a convergence on the aligned weight distributions
at the next layer π̂j → πj . The convergences of Aj−1ϕ̂j and π̂j then impose a convergence on
the kernel defined by ϕ̂j :〈

ϕ̂j(x), ϕ̂j(x′)
〉

= 1
dj

dj∑
i=1

ρ
(〈
Aj−1wj,i, Aj−1ϕ̂j−1(x)

〉)
ρ
(〈
Aj−1wj,i, Aj−1ϕ̂j−1(x′)

〉)
(1.32)

→ Ewj∼πj

[
ρ
(
⟨wj , ϕj−1(x)⟩

)
ρ
(
⟨wj , ϕj−1(x′)⟩

)]
=
〈
ϕj(x), ϕj(x′)

〉
. (1.33)

This defines the feature map ϕj (up to rotation) from ϕj−1 and πj , and implies that the kernel of
ϕ̂j converges to the kernel of ϕj . One can then prove that it implies that Aj ϕ̂j → ϕj , completing
the induction step.

We verify numerically in Chapter 7 the convergence in eq. (1.28) of aligned activations on
learned scattering networks and ResNets trained on the CIFAR-10 and ImageNet datasets.
We also verify the convergence in of eq. (1.31) of the aligned weight distributions on learned
scattering networks trained on CIFAR-10 through the convergence of their covariance. These
results provide empirical evidence for the mean-field conjecture.

25



Chapter 1. Introduction

The rainbow model. Chapter 7 introduces the rainbow model of deep networks. It is a model
which specifies the joint probability distribution of trained network weights across layers, and
is motivated by the reasoning in the above paragraph. The model is parameterized by weight
distributions (πj)j≤J and activations (ϕj)j≤J which satisfy the consistency equation (1.33). It
assumes that the neurons wj,i are independent samples from πj that have been aligned to the
activations of the previous layer with Aj−1:

wj,i = AT
j−1w

′
j,i with w′

j,i ∼ πj independently. (1.34)

The model can be sampled iteratively as follows: the first layer weights (w1,i)i≤d1
are i.i.d.

samples from π1. They define the activations ϕ̂1, from which the alignment A1 to ϕ1 can be
obtained. The weights at the second layer (w2,i)i≤d2

are then i.i.d. samples from the finite-
dimensional marginal of π2 given by AT

1 . It similarly defines the activations π̂2 and the align-
ment A2, and the process is repeated for all layers. The different layer weights are thus not
independent: Wj depends on the previous layer weights W1, . . . ,Wj−1 through the alignment
Aj−1.

Under this simplified probabilistic model, we prove in Chapter 7 that we recover the activa-
tion convergence of eq. (1.28). The argument relies on the law of large numbers applied to the
kernels as in eqs. (1.32) and (1.33). Even though the rainbow assumptions may be too restrictive
to apply to trained weights, they apply at initialization with πj = N (0, Id). This result thus
may be of interest to the study of the SGD training dynamics.

In practice, one needs to estimate finite-dimensional approximations of the infinite-dimensional
feature maps (ϕj)j≤J and weight distributions (πj)j≤J . In our numerical experiments, we ap-
proximate ϕj the activations of a large but finite-width network. It then remains to define
parameterized models of the weight distributions πj .

Colored weight covariances. Rainbow networks, and any network which shares the con-
vergence properties stated in eqs. (1.28) and (1.31), thus implement a deterministic function
which is in a reproducing kernel Hilbert space (RKHS). The properties of this RKHS are de-
termined by the weight distributions (πj)j≤J . In particular, the singular values of the weight
matrices Wj , or equivalently the eigenvalues of the empirical aligned weight covariance matrices
d−1
j Aj−1W

T
j WjA

T
j−1, are related to the eigenvalues of the weight covariance matrices

Cj = Ewj∼πj

[
wjw

T
j

]
. (1.35)

The covariances Cj thus capture the reductions in dimensionality computed by the weight ma-
trices Wj .

The effect of the covariances can be evidenced by factorizing

Wj = W̃j Ĉ
1/2
j , (1.36)

where Ĉj = AT
j−1CjAj−1 is the covariance expressed in the basis defined by the activations ϕ̂j−1,

and W̃j are the whitened weights which thus have an identity covariance.
Rainbow networks thus iterates between the linear dimensionality reductions computed by

the “colored” covariances Ĉ
1/2
j and non-linear high-dimensional embeddings with the white

random features ρW̃j . This is illustrated in Figure 1.9. Similar models based on hierarchical
kernels were introduced in previous works (Cho and Saul, 2009; Anselmi et al., 2015; Mairal,
2016; Bietti, 2019).

26



Section 1.5. Organization of the dissertation

Figure 1.9: The rainbow model models network operations as an alternation of increases and decreases
in dimensionality. The former is due to the low-rank weight covariances, while the latter is due to the non-
linear white random features. The random features give rise to arbitrary rotations in the activations at
each layer, which in turn create dependencies with the weights at the next layer which are similarly rotated.
After the alignment procedure, both activations and weight distributions converge to a deterministic limit.

Gaussian rainbow networks. In Chapter 7, we also specialize the rainbow model to the
Gaussian case, where πj = N (0, Cj) is entirely determined by its covariance. We show that
Gaussian rainbow networks enjoy several theoretical properties due to the rotation invariance
of the multivariate normal distribution. First, the white random features ρW̃j then compute
dot-product kernel embeddings. Second, it also leads to approximate equivariance with respect
to subgroups of the orthogonal group, and it becomes exact when the widths increase to infinity.

The Gaussian assumption is too restrictive to model arbitrary trained networks. However,
it can approximately hold for architectures which incorporate prior information and restrict
their learned weights. We show in Chapter 7 that the learned scattering network architecture
described in Chapter 6 learns approximately Gaussian channel weights. In particular, sampling
conditionally Gaussian weights according to eq. (1.34) using weight covariances estimated from
the weights of a trained network leads to a comparable classification accuracy without training
when the network width is large enough.

Contributions. The rainbow model is a joint model of the probability distribution of trained
network weights. It integrates empirical observations on the statistical properties of network
weights and activations. The alignment procedure performs a “registration” or “canonicaliza-
tion” of the network by “fixing the gauge symmetry” of rotations in the network hidden layers,
which greatly facilitates numerical and theoretical analyses. The rainbow model may lead to
new insights in the approximation and generalization properties of deep networks. In addition,
the conjectured static mean-field limit, which holds at initialization, might enable refined studies
of the training dynamics of stochastic gradient descent in deep networks.

1.5 Organization of the dissertation
The work presented in this dissertation has resulted in five conference papers and one preprint:

1. Florentin Guth*, Etienne Lempereur*, Joan Bruna, and Stéphane Mallat. Conditionally
strongly log-concave generative models. In International Conference on Machine Learning,
2023.

2. Florentin Guth, Simon Coste, Valentin De Bortoli, and Stéphane Mallat. Wavelet score-
based generative modeling. In Advances in Neural Information Processing Systems, 2022.

27



Chapter 1. Introduction

3. Zahra Kadkhodaie, Florentin Guth, Stéphane Mallat, and Eero P Simoncelli. Learning
multi-scale local conditional probability models of images. In International Conference on
Learning Representations, 2023.

4. John Zarka, Florentin Guth, and Stéphane Mallat. Separation and concentration in deep
networks. In International Conference on Learning Representations, 2021.

5. Florentin Guth, John Zarka, and Stéphane Mallat. Phase collapse in neural networks. In
International Conference on Learning Representations, 2022.

6. Florentin Guth, Brice Ménard, Gaspar Rochette, and Stéphane Mallat. A rainbow in deep
network black boxes. arXiv preprint arXiv:2305.18512, 2023.

They are collected in the rest of the manuscript, which is divided in three parts.
In Part I, we study the properties of the wavelet conditional distributions introduced by

Marchand et al. (2022). We generalize the wavelet conditional factorization to wavelet packet
projectors in Chapter 2. It leads to conditionally log-concave models of multiscale physical fields,
for which all sources of errors can be controlled. We then turn to score-based diffusion models
in Chapter 3. We show that the cascaded diffusion models introduced by Saharia et al. (2021);
Ho et al. (2022); Dhariwal and Nichol (2021) leverage the regularity of the conditional wavelet
scores to accelerate the generation of samples from the model. We then focus in Chapter 4 on
estimation of the scores with deep networks. We show that the wavelet conditional distributions
of face images are well approximated with a local Markov random field, which allows reducing
the receptive field size of the score network and hence the dimensionality of the learning task.

In Part II, we study structured non-linear operators for image classification. We introduce in
Chapter 5 distinct separation and concentration operators for image classification. We demon-
strate that these non-linear operators can increase the linear classification accuracy via different
means. These operators are combined in a first learned scattering network architecture which
reaches the classification accuracy of ResNet-18 on the ImageNet dataset. In Chapter 6, we
then specialize the separation operator of the previous chapter to the phase collapse of com-
plex wavelet coefficients. We show mathematically and numerically that these phase collapses
are both necessary and sufficient to obtain high classification accuracies. This leads to a sec-
ond, more streamlined learned scattering network architecture which exploits exclusively this
non-linear mechanism to increase classification accuracy.

In Part III, we study the weights of trained deep networks. We introduce in Chapter 7 a
model of their probability distribution. We prove that the assumptions of the model imply that
aligned hidden activations converge in the infinite-width limit, recovering the observations of
Kornblith et al. (2019). The various model properties are validated numerically on ResNets
or learned scattering networks. In particular, we demonstrate that Gaussian rainbow networks
provide accurate models of learned scattering networks trained on the CIFAR-10 dataset.

Finally, we conclude in Chapter 8 with a summary of our findings and perspectives for future
work.

28



Part I

Properties of Wavelet Conditional
Probability Distributions





Chapter

2
Conditionally Strongly
Log-Concave Generative
Models

Chapter content
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Conditionally strongly log-concave models . . . . . . . . . . . . . . . 33

2.2.1 Conditional factorization and log-concavity . . . . . . . . . . . . . . . . 33
2.2.2 Learning guarantees with score matching . . . . . . . . . . . . . . . . . 35
2.2.3 Score matching with exponential families . . . . . . . . . . . . . . . . . 36
2.2.4 Sampling guarantees with MALA . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Wavelet packet conditional log-concavity . . . . . . . . . . . . . . . . 38
2.3.1 Energies with scalar potentials . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Wavelet packets and renormalization group . . . . . . . . . . . . . . . . 39
2.3.3 Multiscale scalar potentials . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.1 φ4 scalar potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.2 Conditional log-concavity . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 Application to cosmological data . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

There is a growing gap between the impressive results of deep image generative models and
classical algorithms that offer theoretical guarantees. The former suffer from mode collapse or
memorization issues, limiting their application to scientific data. The latter require restrictive
assumptions such as log-concavity to escape the curse of dimensionality. We partially bridge this
gap by introducing conditionally strongly log-concave (CSLC) models, which factorize the data
distribution into a product of conditional probability distributions that are strongly log-concave.
This factorization is obtained with orthogonal projectors adapted to the data distribution. It
leads to efficient parameter estimation and sampling algorithms, with theoretical guarantees,
although the data distribution is not globally log-concave. We show that several challenging
multiscale processes are conditionally log-concave using wavelet packet orthogonal projectors.
Numerical results are shown for physical fields such as the φ4 model and weak lensing convergence
maps with higher resolution than in previous works. These results evidence properties of some
image distributions that may be used to escape the curse of dimensionality.

This chapter is adapted from the following publication: Florentin Guth*, Etienne Lem-
pereur*, Joan Bruna, and Stéphane Mallat. Conditionally strongly log-concave generative mod-
els. In International Conference on Machine Learning, 2023. We omit the proofs of the mathe-
matical results in Section 2.2, which were not done by the author of this dissertation.



Chapter 2. Conditionally Strongly Log-Concave Generative Models

2.1 Introduction
Generative modeling requires the ability to estimate an accurate model of a probability dis-
tribution from a training dataset, as well as the ability to efficiently sample from this model.
Any such procedure necessarily introduces errors, due to limited expressivity of the model class,
learning errors of selecting the best model within that class, and sampling errors due to limited
computational resources. For high-dimensional data, it is highly challenging to control all errors
with polynomial-time algorithms. Overcoming the curse of dimensionality requires exploiting
structural properties of the probability distribution. For instance, theoretical guarantees can be
obtained with restrictive assumptions of log-concavity, or with low-dimensional parameterized
models. In contrast, recent deep-learning-based approaches such as diffusion models (Ramesh
et al., 2022; Saharia et al., 2022; Rombach et al., 2022) have obtained impressive results for
distributions which do not satisfy these assumptions. Unfortunately, in such cases, theoretical
guarantees are lacking, and diffusion models have been found to memorize their training data
(Carlini et al., 2023; Somepalli et al., 2022), which is inappropriate for scientific applications.
The disparity between these two approaches highlights the need for models which combine the-
oretical guarantees with sufficient expressive power. This chapter contributes to this objective
by defining the class of conditionally strongly log-concave distributions. We show that it is
sufficiently rich to model the probability distributions of complex multiscale physical fields, and
that such models can be sampled with fast algorithms with provable guarantees.

Sampling and learning guarantees. While the theory for sampling log-concave distribu-
tions is well-developed (Chewi, 2023), simultaneous learning and sampling guarantees for general
non-log-concave distributions are less common. Block et al. (2020) establish a fast mixing rate
of multiscale Langevin dynamics under a manifold hypothesis. Koehler et al. (2022) studies
the asymptotic efficiency of score-matching compared to maximum-likelihood estimation under
a global log-Sobolev inequality, which is not quantitative beyond globally log-concave distribu-
tions. Chen et al. (2022b,a) establish polynomial sampling guarantees for a reverse score-based
diffusion, given a sufficiently accurate estimate of the time-dependent score. Sriperumbudur
et al. (2013); Sutherland et al. (2018); Domingo-Enrich et al. (2021) study density estimation
with energy-based models under different infinite-dimensional parametrizations of the energy.
They use various metrics including score-matching to establish statistical guarantees that avoid
the curse of dimensionality, under strong smoothness or sparsity assumptions of the target distri-
bution. Finally, Balasubramanian et al. (2022) derive sampling guarantees in Fisher divergence
of Langevin Monte-Carlo beyond log-concave distributions. While these hold under a general
class of target distribution, such Fisher guarantees are much weaker than Kullback-Leibler guar-
antees. Bridging this gap requires some structural assumptions on the distribution.

Multiscale generative models. Images include structures at all scales, and several genera-
tive models have relied on decompositions with wavelet transforms (Yu et al., 2020; Gal et al.,
2021). More recently, Marchand et al. (2022) established a connection between the renormaliza-
tion group in physics and a conditional decomposition of the probability distribution of wavelet
coefficients across scales. These models rely on maximum likelihood estimations with iterated
Metropolis sampling, which leads to a high computational complexity.

Conditionally strongly log-concave distributions. We consider probability distributions
whose Gibbs energy is dominated by quadratic interactions,

p(x) = 1
Z

e−E(x) with E(x) = 1
2x

TKx+ V (x).

The matrix K is positive symmetric and V is a non-quadratic potential. If V is non-convex,
then p is a priori not log-concave. However, the Hessian of E may be dominated by the large

32



Section 2.2. Conditionally strongly log-concave models

eigenvalues of K, whose corresponding eigenvectors define directions in which p is log-concave.
For multiscale stationary distributions, K is a convolution whose eigenvalues have a power-law
growth at high frequencies. As a result, the conditional distribution of high frequencies given
lower frequencies may be log-concave.

Section 2.2 introduces factorizations of probability distributions into products of conditional
distributions with arbitrary hierarchical projectors. If the projectors are adapted to obtain
strongly log-concave factors, we prove that maximum likelihood estimation can be replaced by
score matching, which is computationally more efficient. The MALA sampling algorithm also has
a fast convergence due to the conditional log-concavity. Section 2.3 describes a class of multiscale
physical processes that admit conditionally strongly log-concave (CSLC) decompositions with
wavelet packet projections. This class includes the φ4 model studied in statistical physics. These
results thus provide an approach to provably avoid the numerical instabilities at phase transitions
observed in such models. We then show in Section 2.4 that wavelet packet CSLC decompositions
provide accurate models of cosmological weak lensing images, synthesized as test data for the
Euclid outer-space telescope mission (Laureijs et al., 2011).

2.2 Conditionally strongly log-concave models

Section 2.2.1 introduces conditionally strongly log-concave models, by factorizing the probabil-
ity density into conditional probabilities. For these models, Sections 2.2.2 and 2.2.3 give upper
bounds on learning errors with score matching algorithms, and Section 2.2.4 on sampling errors
with a Metropolis-Adjusted Langevin Algorithm (MALA). We omit the proofs of the mathe-
matical results in this section, which were not done by the author of this manuscript. We refer
the reader to the original publication (Guth et al., 2023a, Appendix E).

2.2.1 Conditional factorization and log-concavity

We introduce a probability factorization based on orthogonal projections on progressively smaller-
dimensional spaces. The projections are adapted to define strongly log-concave conditional
distributions.

Orthogonal factorization. Let x ∈ Rd. A probability distribution p(x) can be decomposed
into a product of autoregressive conditional probabilities

p(x) = p(x[1])
d∏
i=2

p(x[i] |x[1], . . . , x[i− 1]). (2.1)

However, more general factorizations can be obtained by considering blocks of variables in an
orthogonal basis. We initialize the decomposition with x0 = x. For j = 1 to J , we recursively
split xj−1 in two orthogonal projections:

xj = Gjxj−1 and x̄j = Ḡjxj−1,

where Gj and Ḡj are unitary operators such that GT
j Gj + ḠT

j Ḡj = Id. It follows that

xj−1 = GT
j xj + ḠT

j x̄j . (2.2)

Let dj = dim(xj) and d̄j = dim(x̄j), then dj−1 = dj + d̄j .
Since the decomposition is orthogonal, for any probability distribution p we have

p(xj−1) = p(xj , x̄j) = p(xj)p(x̄j |xj).

33



Chapter 2. Conditionally Strongly Log-Concave Generative Models

Cascading this decomposition J times gives

p(x) = p(xJ)
J∏
j=1

p(x̄j |xj), (2.3)

which generalizes the autoregressive factorization (2.1). The properties of the factors p(x̄j |xj)
depend on the choice of the orthogonal projectors Gj and Ḡj , as we shall see below.

Model learning and sampling. A parametric model pθ(x) of p(x) can be defined from
eq. (2.3) by computing parametric models of p(xJ) and each p(x̄j |xj):

pθ(x) = pθJ
(xJ)

J∏
j=1

pθ̄j
(x̄j |xj), (2.4)

with θ = (θJ , θ̄j)j≥J .
Learning this model then amounts to optimizing the parameters θJ , (θ̄j)j from available data,

so that the resulting distributions are close to the target. We measure the associated learning
errors with the Kullback-Leibler divergences ϵLJ = KLxJ

(p(xJ) ∥ pθJ
(xJ)) and

ϵ̄Lj = Exj

[
KLx̄j

(p(x̄j |xj) ∥ pθ̄j
(x̄j |xj))

]
, j ≤ J.

Once the parameters have been estimated, we sample from pθ as follows. We first com-
pute a sample xJ of pθJ

. The sampling introduces an error, which we measure with ϵSJ =
KLxJ

(p̂θJ
(xJ) ∥ pθJ

(xJ)), where p̂θJ
is the law of the samples returned by the algorithm. For

each j ≤ J , given the sampled xj , we compute a sample x̄j of pθ̄j
(x̄j |xj) and recover xj−1 with

eq. (2.2), up to j = 1, where it computes x = x0. Let p̂θ̄j
be the law of computed samples x̄j . It

also introduces an error

ϵ̄Sj = Exj

[
KLx̄j

(p̂θ̄j
(x̄j |xj) ∥ pθ̄j

(x̄j |xj))
]
, j ≤ J.

Let p̂ be the (joint) law of the computed samples x. The following proposition relates the total
variation distance TV(p̂, p) with the learning and sampling errors for each j.

Proposition 2.1 (Error decomposition).

TV(p̂, p) ≤ 1√
2

√√√√ϵLJ +
J∑
j=1

ϵ̄Lj +

√√√√ϵSJ +
J∑
j=1

ϵ̄Sj

.
The overall error depends on the sum of learning and sampling errors for each conditional

probability distribution. Therefore, to control the total error, we need sufficient conditions
ensuring that each of these sources of error is small. We introduce CSLC models for this
purpose.

Conditional strong log-concavity. We recall that a distribution p is strongly log-concave
(SLC) if there exists β[p] ≥ α[p] > 0 such that

α[p] Id ⪯ −∇2
x log p(x) ⪯ β[p] Id, ∀x. (2.5)

Definition 2.1. We say that p(x) = p(xJ)∏J
j=1 p(x̄j |xj) is conditionally strongly log-concave

(CSLC) if each p(x̄j |xj) is strongly log-concave in x̄j for all xj.

34



Section 2.2. Conditionally strongly log-concave models

p(
x

1
)

x1

x̄
1

p(x̄1|x1)

p(
x

1
)

x1

x̄
1

p(x̄1|x1) x1

x̄
1

p(x̄1|x1) x1

x̄
1

p(x̄1|x1)

Figure 2.1: A globally log-concave distribution is conditionally log-concave ( leftmost), but the converse
is not true (middle left): a non-convex support can have convex vertical slices (and horizontal projection).
Conditional log-concavity also depends on the choice of orthogonal projectors: a distribution can fail to
be conditionally log-concave in the canonical basis (middle right) but be conditionally log-concave after a
rotation of 45 degrees ( rightmost).

Conditional log-concavity is a weaker condition than (joint) log-concavity. If p(x) is log-
concave, then it has a convex support. On the other hand, conditional log-concavity only con-
straints slices (through conditioning) and projections (through marginalization) of the support
of p(x). Figure 2.1 illustrates that a jointly log-concave distribution is conditionally log-concave
(and p(xJ) is furthermore log-concave), but the converse is not true. Conditional log-concavity
also depends on the choice of the orthogonal projections Gj and Ḡj which need to be adapted to
the data. A major issue is to identify projectors that define a CSLC decomposition, if it exists.
We show in Section 2.3 that this can be achieved for a class of physical fields with wavelet packet
projectors.

The following subsections provide bounds on the learning and sampling errors ϵ̄Lj and ϵ̄Sj for
CSLC models. To simplify notations, in the following we drop the index j and replace pθ̄j

(x̄j |xj)
with pθ̄(x̄|x). We shall suppose that the dimension dJ = d(xJ) is sufficiently small so that xJ
can be modeled and generated with any standard algorithm with small errors ϵLJ and ϵSJ (dJ = 1
in our numerical experiments).

2.2.2 Learning guarantees with score matching

Fitting probabilistic models pθ̄(x̄|x) by directly minimizing the KL errors ϵ̄L is computationally
challenging because of intractable normalization constants. Strong log-concavity enables efficient
yet accurate learning via a tight relaxation to score matching.

There exist several frameworks to fit a parametric probabilistic model to the data, most no-
tably the maximum-likelihood estimator of a general energy-based model pθ̄(x̄|x) = Z−1

θ̄
(x)e−Ēθ̄(x,x̄),

where Ēθ̄ is an arbitrary parametric class. This is computationally expensive due to the need to
estimate the gradients of the normalization constants −∇θ̄ logZθ̄ = Epθ̄

[∇θ̄Ēθ̄] during training,
which requires the ability to sample from pθ̄(x̄|x). An appealing alternative which has enjoyed
recent popularity is score matching (Hyvärinen and Dayan, 2005), which instead minimizes the
Fisher Divergence FI:1

ℓ(θ̄) = Ex[FIx̄(p(x̄|x) ∥ pθ̄(x̄|x))]

= Ex,x̄
[1

2∥−∇x̄ log p(x̄|x)−∇x̄Ēθ̄(x, x̄)∥2
]
.

With a change of variables we obtain

ℓ(θ̄) = Ex,x̄
[1

2∥∇x̄Ēθ̄∥
2 −∆x̄Ēθ̄

]
+ cst, (2.6)

1Our notation differs from the conventional use by a factor 1/2 for convenience.

35



Chapter 2. Conditionally Strongly Log-Concave Generative Models

showing that ℓ(θ̄) can be minimized from available samples without estimating normalizing
constants or sampling from pθ̄. Indeed, given i.i.d. samples {(x̄1, x1), . . . , (x̄n, xn)} from p(x̄, x),
the empirical risk ℓ̂(θ̄) associated with score matching on p(x̄|x) is given by

ℓ̂(θ̄) = 1
n

n∑
i=1

(1
2∥∇x̄Ēθ̄(x

i, x̄i)∥2 −∆x̄Ēθ̄(x
i, x̄i)

)
. (2.7)

The score-matching objective avoids the computational barriers associated with normaliza-
tion and sampling in high-dimensions, at the expense of defining a weaker metric than the KL
divergence. This weakening of the metric is quantified by the log-Sobolev constant ρ[p] associ-
ated with p. It is the largest ρ > 0 such that KL(q ∥ p) ≤ 1

ρFI(q ∥ p) for any q. Learning via score
matching can therefore be seen as a relaxation of maximum-likelihood training, whose tightness
is controlled by the log-Sobolev constant of the hypothesis class (Koehler et al., 2022). This
constant can be exponentially small for general multimodal distributions, making this relaxation
too weak. A crucial exception, however, is given by SLC distributions (or small perturbations
of them), as shown by the Bakry-Emery criterion (Bakry et al., 2014, Definition 1.16.1): if
α[pθ̄(x̄|x)] ≥ ᾱ > 0 for all x, or equivalently if ∇2

x̄Ēθ̄ ⪰ ᾱ Id for all x, x̄, then ρ[pθ̄(x̄|x)] ≥ ᾱ for
all x, and therefore

ϵ̄L ≤ 1
ᾱ
ℓ(θ̄). (2.8)

We remark that while eq. (2.8) does not make explicit CSLC assumptions on the reference
distribution p, a consistent learning model implies that the conditional distribution p(x̄|x) is
arbitrarily well approximated (in KL divergence) with SLC distributions—thus justifying the
structural CSLC assumption on the target.

2.2.3 Score matching with exponential families

In numerical applications, one cannot minimize the true score-matching loss ℓ as only a finite
amount of data is available. We now show that a similar control as eq. (2.8) can be obtained for
the empirical loss minimizer, whenever prior information enables us to define low-dimensional
exponential models for pθ̄(x̄|x) with good accuracy. It also provides a control on the critical
parameter ᾱ, addressing the optimization and statistical errors.

We consider a linear model Ēθ̄(x, x̄) = θ̄TΦ̄(x, x̄) with a fixed potential vector Φ̄(x, x̄) ∈ Rm

(m is thus the number of parameters), and the corresponding minimization of the (conditional)
score matching objective in eq. (2.7). Thanks to this linear parameterization, it becomes a
convex quadratic form ℓ̂(θ̄) = 1

2 θ̄
TĤθ̄ − θ̄Tĝ, with

Ĥ = 1
n

n∑
i=1
∇x̄Φ̄(xi, x̄i)∇x̄Φ̄(xi, x̄i)T ∈ Rm×m,

ĝ = 1
n

n∑
i=1

∆x̄Φ̄(xi, x̄i) ∈ Rm.

It can be minimized in closed-form by inverting the Hessian matrix: ˆ̄θ = Ĥ−1ĝ. As discussed,
the sampling and learning guarantees of the model critically rely on the CSLC property, which
is ensured as long as ˆ̄θ ∈ Θᾱ := {θ̄ | ∇2

x̄Ēθ̄(x, x̄) ⪰ ᾱ Id, ∀ (x, x̄)} with ᾱ > 0.
The following theorem leverages the finite-dimensional linear structure of the score-matching

problem to establish fast non-asymptotic rates of convergence, controlling the excess risk in KL
divergence.

Theorem 2.1 (Excess risk for CSLC exponential models). Let θ̄⋆ = arg min ℓ(θ̄) and ˆ̄θ =
arg min ℓ̂(θ̄). Assume:

36



Section 2.2. Conditionally strongly log-concave models

(i) θ̄⋆ ∈ Θᾱ for some ᾱ > 0,

(ii) H = E
[
∇x̄Φ̄∇x̄Φ̄T

]
⪰ η Id with η > 0,

(iii) the sufficient statistics Φ̄ satisfy ∇Φ̄k(x, x̄) is MΦ̄-Lipschitz for any k ≤ m and all x, as
well as moment and regularity conditions detailed in Guth et al. (2023a, Appendix E).

Then when n > m, the empirical risk minimizer ˆ̄θ satisfies

ˆ̄θ ∈ Θ ˆ̄α with E(x̄i
,x

i)

[
ˆ̄α
]
≥ ᾱ−O

(
η−1

√
m

n

)
, (2.9)

and, for t≪
√
mℓ(θ̄⋆),

ϵ̄L ≤ ℓ(θ̄⋆)
ᾱ

(1 + t) (2.10)

with probability greater than 1 − exp{−O(n log(tn/
√
m))} over the draw of the training data.

The constants in O(·) only depend on moment and regularity properties of Φ̄.

The theorem provides learning guarantees for the empirical risk minimizer ˆ̄θ (compare Equa-
tions (2.8) and (2.10)), and hinges on three key properties: the ability of the exponential family to
approximate the true conditionals at each block (i) with small Fisher approximation error ℓ(θ̄⋆),
(ii) with a sufficiently large strong log-concavity parameter ᾱ, and (iii) with a well-conditioned
kernel H. In numerical applications, the number of parameters m should be small enough to con-
trol the learning error for finite number of samples n, and to be able to compute and invert the
Hessian matrix Ĥ. We will define in Section 2.3 low-dimensional models that can approximate
a wide range of multiscale physical fields.

The proof uses concentration of the empirical covariance Ĥ, and combines both upper and
lower tail probability bounds (Mourtada, 2022; Vershynin, 2012) to bound the expectation, sim-
ilarly as known results for least-squares (Mourtada, 2022; Hsu et al., 2012). The statistical prop-
erties of score matching under exponential families have been studied in the infinite-dimensional
setting by Sriperumbudur et al. (2013); Sutherland et al. (2018), where kernel ridge estimators
achieve non-parametric rates n−s, s < 1. Compared to these, as an intermediate result, we
achieve the optimal rate in FI divergence in n−1 directly with the ridgeless estimator. The key
assumption is (i), namely that the optimal model in the exponential family is SLC. Since our
structural assumption on the target p is precisely that its conditionals are SLC, it is reasonable
to expect this to be generally true. For instance, this is the case if the model is well specified
(p = pθ̄⋆).

2.2.4 Sampling guarantees with MALA

We illustrate the efficient sampling properties of CSLC distributions by focusing on a reference
sampler given by the Metropolis-Adjusted Langevin Algorithm (MALA) with algorithmic warm-
start, which enjoys well-understood convergence properties in this case:

Proposition 2.2 (MALA Sampling, Altschuler and Chewi (2023, Theorem 5.1)). Suppose that
ᾱ Id ⪯ ∇2

x̄Ēθ̄(x̄|x) ⪯ β̄ Id for all x̄, x, and let d̄ = dim(x̄). Then N steps of MALA produce a
sample x̄ with conditional law p̂θ̄(x̄|x) satisfying

ϵ̄S ≤ exp
(
−O

(√
N√
d̄β̄/ᾱ

))
.

MALA can thus be used to sample from CSLC distributions with an exponential conver-
gence, whose mixing time Õ(

√
d̄β̄/ᾱ) is sublinear in the dimension d̄ and linear in the condition

37



Chapter 2. Conditionally Strongly Log-Concave Generative Models

number β̄/ᾱ of the Hessian ∇2
x̄Ēθ̄. We also note that similar guarantees will hold for other

high-precision Metropolis-Hastings samplers, such as Hamilton Monte-Carlo. Together, Propo-
sitions 2.1 and 2.2 and Theorem 2.1 imply a control on the total accumulated error for CSLC
exponential models.

2.3 Wavelet packet conditional log-concavity

The CSLC property depends on the choice of the projectors (Ḡj , Gj) which need to be adapted
to the data. We show that for a class of stationary multiscale physical processes, CSLC models
can be obtained with wavelet packet projectors. These models exploit the dominating quadratic
interactions at high frequencies by splitting the frequency domain in sufficiently narrow bands.
It reveals a powerful mathematical structure in this class of complex distributions.

2.3.1 Energies with scalar potentials

In the following, x ∈ Rd is a
√
d ×
√
d image or two-dimensional field. We denote x[i] the

value of x at pixel or location i. An important class of stationary probability distributions
p(x) = Z−1e−E(x) are defined in physics from an energy composed of a two-point interaction
term K plus a potential that is a sum of scalar potentials v:

E(x) = 1
2x

TKx+
∑
i

v(x[i]). (2.11)

The matrix K is a positive symmetric convolution operator. Equation (2.11) generalizes both
zero-mean Gaussian processes (if v = 0 then K is the inverse covariance) and distributions with
i.i.d. components (if K = 0 then v is the negative log-density of the pixel values). The energy
Hessian is given by

∇2
xE(x) = K + diag

(
v′′(x[i])

)
i
. (2.12)

If v′′(t) < 0 for some t ∈ R then we may get negative eigenvalues for some x, in which case the
energy is not convex.

Equation (2.11) provides models of a wide class of physical phenomena (Marchand et al.,
2022), including ferromagnetism. An important example is the φ4 energy in physics, which is
a non-convex energy allowing to study phase transitions and explain the nature of numerical
instabilities (Zinn-Justin, 2021). It has a kinetic energy term defined by K = −β∆ where ∆ is a
discrete Laplacian that enforces spatial regularity, and its scalar potential is v(t) = t4−(1+2β)t2.
It has a double-well shape which pushes the values of each x[i] towards +1 and −1, and is thus
non-convex. β is an inverse temperature parameter. In the thermodynamic limit d → ∞ of
infinite system size, the φ4 energy has a phase transition at βc ≈ 0.68 (Kaupužs et al., 2016).
At small temperature (β ≥ βc), the local interactions in the energy give rise to long-range
dependencies. Gibbs sampling then “critically slows down” (Chaikin et al., 1995; Sethna, 2021)
due to these long-range dependencies.

Fast sampling can nevertheless be obtained by exploiting conditional strong log-concavity.
Assume that there exists γ > 0 such that v′′(t) ≥ −γ for all t ∈ R. It then follows that
∇2
xE ⪰ K − γ Id. We can thus obtain a convex energy by restricting K over a subspace where

its eigenvalues are larger than γ. The convolution K is diagonalized by the Fourier transform,
with positive eigenvalues that we write K̂(ω) at all frequencies ω. The value K̂(ω) typically
increases when the frequency modulus |ω| increases. A convex energy is then obtained with a
projector over a space of high-frequency images, as shown in the following proposition.

Proposition 2.3 (Conditional log-concavity of scalar potential energies). Consider the energy
defined in eq. (2.11) and assume that −γ ≤ v′′ ≤ δ for some γ, δ > 0 and that K̂(ω) = λ|ω|η for

38



Section 2.3. Wavelet packet conditional log-concavity

some η > 0. Let Ḡ1 be an orthogonal projector over a space of signals whose Fourier transform
have a support included over frequencies ω such that |ω| ≥ |ω0| with |ω0| > (γ/λ)1/η. Then the
conditional probability p(x̄1|x1) is strongly log-concave for all x1.

The proof is in Appendix A.5 and relies on a direct calculation of the Hessian of the condi-
tional energy. This proposition proves that we obtain a strongly log-concave conditional distri-
bution p(x̄1|x1) with a sufficiently high-frequency filter Ḡ1. It is illustrated in the two rightmost
panels of Figure 2.1 on a simplified two-dimensional example inspired from the φ4 energy. The
distribution has two modes x = (1, 1) and x = (−1,−1), and the Fourier coefficients are com-
puted with a 45 degrees rotation: x1 = (x[1] + x[2])/

√
2 and x̄1 = (x[2]− x[1])/

√
2, which leads

to a log-concave conditional distribution.
Multiscale physical fields with scalar potential energies (2.11) are often self-similar over

scales, in the sense that lower-frequency fields xj can also be described with an energy in the
form of eq. (2.11), with different parameters (Wilson, 1971). This explains why Proposition 2.3
can be iterated to obtain a CSLC decomposition. For φ4 energies, the range of Ḡ1 is non-empty
as soon as β ≥ 1

2 , which includes the critical temperature βc ≈ 0.68 (though δ = ∞). At the
critical temperature, x1 is further described by the same parameters K and v as x, so that a
complete CSLC decomposition is obtained by iteratively selecting projectors Ḡj which isolate
the highest frequencies of xj−1.

Proposition 2.3 can be extended to general energies

E(x) = 1
2x

TKx+ V (x),

by assuming that the Hessian ∇2V (x) is bounded above and below. Conditional log-concavity
may then be found by exploiting dominating quadratic energy terms with a PCA of K. We
believe that this general principle may hold beyond the case of scalar potential energies (2.11)
considered here.

2.3.2 Wavelet packets and renormalization group

We now define wavelet packet projectors Gj and Ḡj , which are orthogonal projectors on localized
zones of the Fourier plane. They are computed by convolutions with conjugate mirror filters
and subsamplings Coifman et al. (1992), described in Appendix A.1. These filters perform a
recursive split of the frequency plane illustrated in Figure 2.2.

The wavelet packet Ḡj is a projector on a high-frequency domain, whereas Gj is a projection
on the remaining lower-frequency domain. An orthogonal wavelet transform is a particular
example, which decomposes the Fourier plane into annuli of about one octave bandwidth, as
shown in the top left and bottom panels of Figure 2.2. However, it may not be sufficiently well
localized in the Fourier domain to obtain strictly convex energies. The frequency localization
is improved by refining this split, as illustrated on the top right panel of Figure 2.2. Each Ḡj
then performs a projection over a frequency annulus whose bandwidth is a half octave. Wavelet
packets can adjust the frequency bandwidth to 2−M+1 octave for any integer M ≥ 1. It allows
reducing the support of Ḡj , which is necessary to obtain a CSLC decomposition according to
Proposition 2.3.

2.3.3 Multiscale scalar potentials

The probability distribution p(x) is approximated by pθ(x) = pθJ
(xJ)∏J

j=1 pθ̄j
(x̄j |xj), where

each xj and x̄j are computed with wavelet packet projectors Gj and Ḡj . We introduce a
parameterization of pθ̄j

with scalar potential energies, following Marchand et al. (2022). We
shall suppose that the dimension dJ = dim(xJ) is sufficiently small so that p(xJ) may be
approximated with any standard algorithm (dJ = 1 in our numerical experiments).

39



Chapter 2. Conditionally Strongly Log-Concave Generative Models

Figure 2.2: Left: frequency localization of the decomposition (xJ , x̄J , . . . , x̄1) with wavelet packet projec-
tors of 1 ( left) and 1/2 ( right) octave bandwidths. Right: iterative decomposition of x = x0 with (Ḡj , Gj)
implementing a wavelet packet transformation over J = 2 layers of 1 octave bandwidth.

The self-similarity property of multiscale fields with scalar energies motivates the definition
of each pθ̄j

(x̄j |xj) with an interaction energy

Ēθ̄j
(xj , x̄j) = 1

2 x̄
T
j K̄j x̄j + x̄T

j K̄
′
jxj +

∑
i

v̄j(xj−1[i])

= θ̄Tj Φ̄j(xj , x̄j), (2.13)

which derives from the fact that p(xj−1) defines an energy of the form (2.11) (Marchand et al.,
2022). Φ̄j captures the interaction terms and performs a parametrized approximation of v̄j ,
defined in Appendix A.2.1.

The parameters θ̄j are estimated from samples by inverting the empirical score matching
Hessian as in Section 2.2.3. We generate samples from the resulting distribution pθ by sampling
from pθJ

and then iteratively from each pθ̄j
with MALA. The learning and sampling algorithms

are summarized in Appendix A.2.2. Additionally, Appendix A.4 explains that a parameterized
model of the global energy (2.11), which is crucial for scientific applications, can be recovered
with free-energy score matching.

2.4 Numerical results

This section demonstrates that a wavelet packet decomposition of φ4 scalar fields and weak-
lensing cosmological fields defines strongly log-concave conditional distributions. It allows ef-
ficient learning and sampling algorithms, and leads to higher-resolution generations than in
previous works.

2.4.1 φ4 scalar potential energy

We learn a wavelet packet model of φ4 scalar fields at different temperatures, using the decom-
position and models presented in Section 2.3. The wavelet packet exploits the conditionally
strongly log-concave property of φ4 scalar fields (Proposition 2.3) to obtain a small error in the
generated samples, as shown in Section 2.2. We first verify qualitatively and quantitatively that
this error is small.

We evaluate the wavelet packet model at three different temperatures, which have different
statistical properties: β = 0.50, the “disorganized” state, β = 0.68 ≈ βc the critical point,
and β = 0.76 the “organized” state. The computational efficiency of our approach enables
generating high-resolution 128 × 128 images, as opposed to 32 × 32 in Marchand et al. (2022).
Indeed, learning the model parameters for 64 × 64 images with score matching takes seconds
on GPU, whereas doing the same with maximum likelihood takes hours on CPU (as sequential
MCMC steps are not easily parallelized). The generated samples are shown in Figure 2.3 and

40



Section 2.4. Numerical results

Figure 2.3: Comparison between training and generated samples for φ4 energies. In columns: training
samples, generated samples, histograms of marginal distributions p(x[i]) and power spectrum. In rows:
disorganized state β = 0.50, critical point β = 0.68 ≈ βc, and organized state β = 0.76.

are qualitatively indistinguishable from the training data. The experimental setting is detailed
in Appendix A.3.

A distribution p(x) having a scalar potential energy (2.11) is a maximum-entropy distribution
constrained by second-order moments and hence by the power spectrum, and by the marginal
distribution of all x[i]. These statistics specify the matrix K and the scalar potential v(t). Our
model pθ also has a scalar potential energy in this case. To guarantee that pθ = p, it is thus
sufficient to show that they have the same power spectrum and same marginal distributions. We
perform a quantitative validation of generated samples by comparing their marginal densities
and Fourier spectrum with the training data. Figure 2.3 shows that these statistics are well
recovered by our model.

2.4.2 Conditional log-concavity

We numerically verify that φ4 at critical temperature is CSLC (Definition 2.1), with appropriate
wavelet packet projectors. It amounts to verifying that the eigenvalues of the conditional Hessian
∇2
x̄j
Ēθ̄j

(xj , x̄j) are positive for all xj and x̄j . We can restrict xj to typical samples from p(xj).
However, it is important that the Hessian be positive even for x̄j outside of the support of
p(x̄j |xj). Indeed, negative eigenvalues occur at local directional maxima of the energy, rather
than minima which would correspond to most likely samples. We thus evaluate the Hessian at
x̄j = 0, which is expected to be such an adversarial point.

Figure 2.4 shows distributions of eigenvalues of∇2
x̄j
Ēθ̄j

for decompositions (Ḡj , Gj) of various
frequency bandwidths. It shows that the smallest eigenvalues become larger and eventually
cross zero as the frequency bandwidth of Ḡj becomes narrower, as predicted by Proposition 2.3.
Furthermore, the condition number of the Hessian becomes smaller as eigenvalues concentrate
towards their mean.

As shown in eq. (2.12), both the quadratic part K and the scalar potential v contribute to the
Hessian. As a way to visualize both contributions, we define the equivalent scalar potential v0

41



Chapter 2. Conditionally Strongly Log-Concave Generative Models

Figure 2.4: Conditional strong log-concavity of φ4 at critical temperature. All scales j yield similar
results. Left: distribution of eigenvalues of ∇2

x̄j
Ēθ̄j

for different frequency bandwidths (j = 1 is shown).
Right: equivalent scalar potentials vj and v̄j (j = 3 is shown).

Figure 2.5: Mixing times for direct (τ) and conditional (τ̄) sampling for φ4 at critical temperature.

as v0(t) = v(t) + Tr(K)
2d t2. It corresponds to extracting the mean quadratic value Tr(K)/2d ∥x∥2

from the quadratic part and reinterpreting it as a scalar potential. This allows visualizing the
average energy on a pixel value when neglecting spatial correlations. The right panel of Figure 2.4
compares these equivalent scalar potentials for the energy Ej of xj and the conditional energy
Ēj . It shows that the non-convex double-well potential in the global energy becomes convex
after the conditioning. It verifies Proposition 2.3, as the mean quadratic value becomes larger
when we restrict K to a subspace of high-frequency signals.

We also verify the sampling efficiency predicted by Proposition 2.2. As we cannot evaluate
the KL divergences ϵ̄Sj , we rather compute the decorrelation mixing time τ̄ , a measure of the
number of steps of conditional MALA to reach a given fixed error threshold averaged over all
scales j. The precise definition is given in Appendix A.3.3. We compare it with the decorrelation
mixing time τ of MALA on the non-convex global energy E.

Sampling maps of size
√
d ×
√
d from the global φ4 energy E at the critical temperature

requires a number of steps τ ∼ d1.0 (Zinn-Justin, 2021). This phenomena is known as critical
slowing down (Chaikin et al., 1995; Sethna, 2021), a consequence of long-range correlations. We
numerically show that our algorithm does not suffer from it. Figure 2.5 indeed demonstrates an
empirical scaling τ̄ ∼ d0.35. Note that this is not directly comparable with Proposition 2.2 as
the decorrelation mixing time defines a different convergence rate than the KL mixing time.

42



Section 2.4. Numerical results

Figure 2.6: Comparison between training and generated samples for weak-lensing maps. Upper left:
histograms of marginal distributions p(x[i]). Lower left: power spectrum. Center: training samples.
Right: generated samples.

2.4.3 Application to cosmological data

We now apply our algorithm to generate high-resolution weak lensing convergence maps (Bartel-
mann and Schneider, 2001; Kilbinger, 2015) with an explicit probability model. Weak lens-
ing convergence maps measure the bending of light near large gravitational masses on two-
dimensional slices of the universe. We used simulated convergence maps computed by the
Columbia lensing group (Zorrilla Matilla et al., 2016; Gupta et al., 2018) as training data. They
simulate the next generation outer-space telescope Euclid of the European Space Agency (Lau-
reijs et al., 2011), which will be launched in 2023 to accurately determine the large scale geometry
of the universe governed by dark matter. Estimating the probability distribution of such maps
is therefore an outstanding problem (Marchand et al., 2022). We demonstrate that the CSLC
property is surprisingly verified in this real-world example, and can be used to efficiently model
and generate these complex fields.

We use the same models and algorithms as for the φ4 energy. The experimental setting is
detailed in Appendix A.3. Figure 2.6 shows that our generated samples are visually highly similar
to the training data. Quantitatively, they have nearly the same power spectrum. The marginal
distribution of all x[i] are also nearly the same, with a long tail corresponding to high amplitude
peaks, which are typically difficult to reproduce. As opposed to microcanonical simulations with
moment-matching algorithms (Cheng and Ménard, 2021), we compute an explicit probability
distribution model, which is exponential. As a maximum-entropy model, it has a higher entropy
than the true distribution, and therefore does not suffer from lack of diversity. By relying on the
CSLC property, we can use the fast score-matching algorithm and compute 128×128 images, at
four times the 32× 32 resolution than with a maximum-likelihood algorithm used in Marchand
et al. (2022).

Figure 2.7 shows the equivalent scalar potentials of the conditional energies at all scales,
which are all convex and thus verify the CSLC property of weak lensing model. It demonstrates
that this property can be used to efficiently model and generate high-resolution complex data.

43



Chapter 2. Conditionally Strongly Log-Concave Generative Models

Figure 2.7: Equivalent scalar potentials v̄j at each scale j for weak-lensing maps (normalized for viewing
purposes).

2.5 Discussion
We introduced conditionally strongly log-concave (CSLC) models and proved that they lead
to efficient learning with score matching and sampling with MALA, while controlling errors.
These models rely on iterated orthogonal projections of the data that are adapted to its dis-
tribution. We showed mathematically and numerically that complex multiscale physical fields
satisfy the CSLC property with wavelet packet projectors. The argument is general and relies
on the presence of a quadratic (kinetic) energy term which ensures strong log-concavity at high-
frequencies. It provides high-quality and efficient generation of high-resolution fields even when
the underlying distribution is unknown. The CSLC property guarantees diverse generations
without memorization issues, which is critical in scientific applications.

CSLC models can be extended by introducing latent variables. The guarantees of Section 2.2
extend to the case where the data is a marginal of a CSLC distribution. A notable example is
a score-based diffusion model, for which the data x = x0 is a marginal of a higher-dimensional
process (xt)t whose conditionals p(xt−δ|xt) are approximately Gaussian white when δ is small,
thus introducing a tradeoff between the number of terms in the CSLC decomposition and the
condition number of its factors. Score diffusion is a generic transformation, but it assumes that
the score ∇xt

log p(xt) can be estimated with deep networks at any t ≥ 0 (Song et al., 2021b; Ho
et al., 2020). For high-resolution images, the score estimation often uses conditional multiscale
decompositions (Saharia et al., 2021; Ho et al., 2022; Dhariwal and Nichol, 2021). Understand-
ing the log-concavity properties of natural image distributions under such transformations is a
promising research avenue to understand the effectiveness of score-based diffusion models. We
now turn to score-based diffusion models in Chapters 3 and 4.

44



Chapter

3
Wavelet Score-Based
Generative Models

Chapter content
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Sampling and discretization of score-based generative models . . . 47

3.2.1 Score-based generative models . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Discretization of SGMs and score regularity . . . . . . . . . . . . . . . . 48

3.3 Wavelet score-based generative models . . . . . . . . . . . . . . . . . 50
3.3.1 Wavelet whitening and cascaded SGMs . . . . . . . . . . . . . . . . . . 50
3.3.2 Discretization and accuracy for Gaussian processes . . . . . . . . . . . . 52

3.4 Acceleration with WSGM: numerical results . . . . . . . . . . . . . . 53
3.4.1 Physical processes with scalar potentials . . . . . . . . . . . . . . . . . . 53
3.4.2 Scale-wise time reduction in natural images . . . . . . . . . . . . . . . . 54

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

We have shown in Chapter 2 that multiscale physical fields have log-concave wavelet condi-
tional distributions. This may not be true for more complex distributions such as natural images
or faces. Despite this, score-based generative models manage to generate high-quality samples
from these distributions.

A drawback of these models is that the discretization of the reverse SDE typically requires
a large number of time steps and hence a high computational cost. This has been partially
alleviated by multiscale generation approaches, which are implicitly performing a conditional
factorization of the data probability distribution that is similar to the one introduced by Marc-
hand et al. (2022) and studied in Chapter 2. We explain how this acceleration results from
better regularity properties of the conditional wavelet scores as opposed to the (joint) global
score. The resulting Wavelet Score-based Generative Model (WSGM) synthesizes wavelet co-
efficients with the same number of time steps at all scales, and its time complexity therefore
grows linearly with the image size. This is proved mathematically for Gaussian distributions,
and shown numerically for the φ4 model and a celebrity face dataset.

This chapter is adapted from the following publication: Florentin Guth, Simon Coste,
Valentin De Bortoli, and Stéphane Mallat. Wavelet score-based generative modeling. In Ad-
vances in Neural Information Processing Systems, 2022. We omit the proofs of the mathematical
results, which were not done by the author of this dissertation. This chapter was written be-
fore Chapters 2 and 4, and is therefore less mature. In particular, the theoretical analysis of
the discretization of score-based diffusions was not as developed, as this chapter predates Chen
et al. (2022b,b). It was then apparent that the central theoretical issue was rather to study the
estimation of the scores. This problem was dealt with in Chapter 2 by relying on conditional log-
concavity to avoid the need for score-based diffusion models, and leveraging prior information to
obtain low-dimensional parametric models of the conditional energies. We present preliminary



Chapter 3. Wavelet Score-Based Generative Models

results on the topic of score estimation for score-based diffusion models of natural images in
Chapter 4.

3.1 Introduction

Score-based Generative Models (SGMs) have obtained remarkable results to learn and sample
probability distributions of image and audio signals (Song and Ermon, 2019; Chen et al., 2021;
Kong et al., 2021; Nichol and Dhariwal, 2021; Popov et al., 2021; Dhariwal and Nichol, 2021).
They proceed as follows: the data distribution is mapped to a Gaussian white distribution by
evolving along a Stochastic Differential Equation (SDE), which progressively adds noise to the
data. The generation is implemented using the time-reversed SDE, which transforms a Gaussian
white noise into a data sample. At each time step, it pushes samples along the gradient of the
log probability, also called score function. This score is estimated by leveraging tools from score-
matching and deep neural networks (Hyvärinen and Dayan, 2005; Vincent, 2011). At sampling
time, the computational complexity is therefore proportional to the number of time steps, i.e.,
the number of forward network evaluations. Early SGMs in Song and Ermon (2019); Song et al.
(2021b); Ho et al. (2020) used thousands of time steps, and hence had a limited applicability.

Diffusion models map a Gaussian white distribution into a highly complex data distribution.
We thus expect that this process will require a large number of time steps. It then comes
as a surprise that recent approaches have drastically reduced this time complexity. This is
achieved by optimizing the discretization schedule or by modifying the original SGM formulation
(Kadkhodaie and Simoncelli, 2021; Jolicoeur-Martineau et al., 2021; Liu et al., 2022a; Zhang and
Chen, 2022; San-Roman et al., 2021; Nachmani et al., 2021; Song et al., 2020; Kong and Ping,
2021; Ho et al., 2020; Luhman and Luhman, 2021; Salimans and Ho, 2022; Xiao et al., 2021).
High-quality score-based generative models have also been improved by cascading multiscale
image generations (Saharia et al., 2021; Ho et al., 2022; Dhariwal and Nichol, 2021) or with
subspace decompositions (Jing et al., 2022). We make explicit the reason of this improvement,
which provably accelerates the sampling of SGMs.

A key idea is that typical high-dimensional probability distributions coming from physics
or natural images have complex multiscale properties. They can be simplified by factorizing
them as a product of conditional probabilities of normalized wavelet coefficients across scales, as
shown in Marchand et al. (2022). These conditional probabilities are more similar to Gaussian
white noise than the original image distribution, and can thus be sampled more efficiently.
On the physics side, this observation is rooted in the renormalization group decomposition in
statistical physics (Wilson, 1971), and has been used to estimate physical energies from data
(Marchand et al., 2022). In image processing, it relies on statistical observations of wavelet
coefficient properties (Wainwright and Simoncelli, 1999). A Wavelet Score-based Generative
Model (WSGM) generates normalized wavelet coefficients from coarse to fine scales, as illustrated
in Figure 3.1. The conditional distribution of each set of wavelet coefficients, given coarse scale
coefficients, is sampled with its own (conditional) SGM. The main result is that a normalization
of wavelet coefficients allows fixing the same discretization schedule at all scales. Remarkably,
and as opposed to existing algorithms, it implies that the total number of sampling iterations
per image pixel does not depend on the image size.

After reviewing score-based generation models, Section 3.2 studies the mathematical proper-
ties of its time discretization, with a focus on Gaussian models and multiscale processes. Images
and many physical processes are typically non-Gaussian, but do have a singular covariance with
long- and short-range correlations. In Section 3.3, we review how to factorize these processes
into probability distributions which capture interactions across scales by introducing orthogonal
wavelet transforms. We shall prove that it allows considering SGMs with the same time schedule
at all scales, independently of the image size. In Section 3.4, we present numerical results on
Gaussian distributions, the φ4 physical model at phase transition, and the CelebA-HQ image

46



Section 3.2. Sampling and discretization of score-based generative models

dataset (Karras et al., 2018).
We omit the proofs of the mathematical results of this chapter, which were not done by the

author of this manuscript. We refer the reader to the original publication (Guth et al., 2022a).

Figure 3.1: An SGM generates images by discretizing a reverse diffusion, which progressively transforms
white Gaussian noise into a natural image. A WSGM generates increasingly higher-resolution images
by discretizing reverse diffusions on wavelet coefficients at each scale. It begins by generating a first
low-resolution image. Renormalized wavelet coefficients are then generated conditionally to this low-
resolution image. A fast inverse wavelet transform reconstructs a higher-resolution image from these
wavelet coefficients. This process is repeated at each scale. The number of steps is the same at each scale,
and can be orders of magnitude smaller than for SGM.

3.2 Sampling and discretization of score-based generative mod-
els

3.2.1 Score-based generative models

Diffusions and time reversal. A Score-based Generative Model (SGM) (Song and Ermon,
2019; Song et al., 2021b; Ho et al., 2020) progressively maps the distribution of data x into the
normal distribution, with a forward Stochastic Differential Equation (SDE) which iteratively
adds Gaussian white noise. It is associated with a noising process (xt)t, with x0 distributed
according to the data distribution p, and satisfying

dxt = −xtdt+
√

2dwt, (3.1)

where (wt)t is a Brownian motion. The solution is an Ornstein-Uhlenbeck process which admits
the following representation for any t ≥ 0:

xt = e−t x0 +
√

1− e−2tz, z ∼ N (0, Id). (3.2)

47



Chapter 3. Wavelet Score-Based Generative Models

The process (xt)t is therefore an interpolation between a data sample x0 and Gaussian white
noise. The generative process inverts (3.1). Under mild assumptions on p (Cattiaux et al., 2021;
Haussmann and Pardoux, 1986), for any T ≥ 0, the reverse-time process xT−t satisfies

dxT−t = {xT−t + 2∇ log pT−t(xT−t)} dt+
√

2 dwt, (3.3)

where pt is the probability density of xt, and ∇ log pt is called the Stein score. Since xT is close
to a white Gaussian random variable, one can approximately sample from xT by sampling from
the normal distribution. We can generate x0 from xT by solving this time-reversed SDE, if
we can estimate an accurate approximation of the score ∇ log pt at each time t, and if we can
discretize the SDE without introducing large errors.

Efficient approximations of the Stein scores are the workhorse of SGM. Hyvärinen and Dayan
(2005) show that the score ∇ log pt can be approximated with parametric functions sθ which
minimize the so-called implicit score matching loss

st = arg min
θ

Ept

[1
2∥sθ(xt)∥

2 + div(sθ)(xt)
]
, (3.4)

or, equivalently, the denoising score matching loss

st = arg min
θ

Ep0,N (0,Id)

∥sθ(e−tx0 +
√

1− e−2tz) + z√
1− e−2t

∥2
. (3.5)

For image generation, sθ is calculated by a neural network parameterized by θ. In statistical
physics problems where the energy can be linearly expanded with coupling parameters, we obtain
linear models sθ(x) = θT∇U(x). This is the case for Gaussian processes where U(x) = xxT; it
also applies to non-Gaussian processes, using non-quadratic terms in U(x).

Time discretization of generation. An approximation of the generative process (3.3) is
computed by approximating ∇ log pt by st and discretizing time. It amounts to approximating
the time-reversed SDE by a Markov chain which is initialised by x̃T ∼ N (0, Id), and computed
over times tk which decrease from tN = T to t0 = 0, at intervals δk = tk − tk−1:

x̃tk−1
= x̃tk + δk{x̃tk + 2stk(x̃tk)}+

√
2δkzk, zk

i.i.d.∼ N (0, Id). (3.6)

Ignoring the error due to the score model, the minimum number of time steps is limited by the
Lipschitz regularity of the score ∇ log pt, see De Bortoli et al. (2021, Theorem 1). The overall
complexity of this generation is N evaluations of the score st(x).

3.2.2 Discretization of SGMs and score regularity

We now study how the regularity of the score∇ log p affects the discretization of (3.6). Assuming
that the score is known, i.e., that st = ∇ log pt, we prove that for Gaussian processes, the number
of time steps to reach a fixed error ε depends on the condition number of its covariance. This
result is generalized to non-Gaussian processes by relating this error to the regularity of ∇ log pt.

Gaussian distributions. Suppose that the data distribution is a Gaussian p = N (0,Σ) with
covariance matrix Σ, in dimension d. Let pt be the distribution of xt. Using (3.2), we have

∇ log pt(x) = −(Id +(Σ− Id)e−2t)−1x. (3.7)

Let p̃t be the distribution of x̃t obtained by the time discretization (3.6). The approximation
error between the distribution p̃0 obtained with the time-reversed SDE and the data distribu-
tion p stems from (i) the mismatch between the distributions of xT and x̃T , and (ii) the time

48



Section 3.2. Sampling and discretization of score-based generative models

discretization. The following theorem relates these two errors to the covariance Σ of x in the
particular case of a uniform time sampling at intervals δk = δ. We normalize the signal energy
by imposing that Tr(Σ) = d, and we write κ the condition number of Σ, which is the ratio
between its largest and smallest eigenvalues.

Theorem 3.1. If the data distribution p = N (0,Σ), the distribution p̃0 of x̃0 in (3.6) with a
uniform discretization δk = δ satisfies KL pp̃0 ≤ ET + Eδ + ET,δ, with

ET = f(e−4T |Tr((Σ− Id)Σ))|), (3.8)
Eδ = f(δ|Tr(Σ−1 − Σ(Σ− Id)−1 log(Σ)/2 + (Id−Σ−1)/3))|), (3.9)

where f(t) = t− log(1 + t) and ET,δ is a higher-order term with ET,δ = o(δ+ e−4T ) when δ → 0
and T → +∞. Furthermore, for any ε > 0, there exists T, δ ≥ 0 such that

(1/d)(ET + Eδ) ≤ ε and N = T/δ ≤ Cε−2κ3. (3.10)

with C ≥ 0 a universal constant and κ the conditioning number of Σ.

This theorem specifies the dependence of the Kullback-Leibler error on the covariance matrix.
It computes an upper bound on the number of time steps N = T/δ to reach an error ε as a
function of the condition number κ of Σ. As expected, it indicates that the number of time
steps should increase with the condition number of the covariance. This theorem is proved in a
more general case in Guth et al. (2022a, Appendix, S5), which includes the case where p has a
non-zero mean. An exact expansion of the Kullback-Leibler divergence is also given.

For stationary processes of images, the covariance eigenvalues are given by the power spec-
trum, which typically decays like |ω|−1 at a frequency ω. It results that κ is proportional to
a power of the image size. Many physical phenomena produce such stationary images with a
power spectrum having a power law decay. In these typical cases, the number of time steps must
increase with the image size. This is indeed what is observed in numerical SGM experiments,
as seen in Section 3.3.

General processes. Theorem 3.1 can be extended to non-Gaussian processes. The number
of time steps then depends on the regularity of the score ∇ log pt.

Theorem 3.2. Assume that ∇ log pt(x) is C 2 in both t and x, and that

supx,t ∥∇
2 log pt(x)∥ ≤ K and ∥∂t∇ log pt(x)∥ ≤M e−αt ∥x∥. (3.11)

for some K,M,α > 0. Then ∥p− p̃0∥TV ≤ ET + Eδ + ET,δ, where

ET =
√

2e−T KL(p∥N (0, Id))1/2, (3.12)
Eδ = 6

√
δ [1 + Ep(∥x∥4)1/4] [1 +K +M(1 + 1/(2α)1/2)], (3.13)

and Eδ,T is a higher order term with ET,δ = o(
√
δ + e−T ) when δ → 0 and T → +∞.

The proof of Theorem 3.2 is in the original publication (Guth et al., 2022a, Appendix S5)
which shows that the result can be strengthened by providing a quantitative upper bound on
∥p− p̃0∥TV. Theorem 3.2 improves on (De Bortoli et al., 2021, Theorem 1) by proving explicit
bounds exhibiting the dependencies on the regularity constants K and M of the score and by
eliminating an exponential growth term in T in the upper bound. Theorem 3.2 is much more
general but not as tight as Theorem 3.1.

The first error term (3.12) is due to the fact that T is chosen to be finite. The second
error term (3.13) controls the error depending upon the discretization time step δ. Since pt is

49



Chapter 3. Wavelet Score-Based Generative Models

obtained from p through a high-dimensional convolution with a Gaussian convolution of variance
proportional to t, the regularity of ∇ log pt(x) typically increases with t so ∥∇2 log pt(x)∥ and
∥∂t∇ log pt(x)∥ rather decrease when t increases. This qualitatively explains why a quadratic
discretization schedule with non-uniform time steps δk ∝ k are usually chosen in numerical
implementations of SGMs (Nichol and Dhariwal, 2021; Song and Ermon, 2020). For simplicity,
we focus on the uniform discretization schedule, but our result could be adapted to non-uniform
time steps with no major difficulties. This remark also explains that it is mainly the regularity
of the score at time t = 0 ∇ log p which determines the error decay (3.13).

While Theorem 3.2 is more general than Theorem 3.1, the Gaussian case provides intuition
about the speed of the error decay (3.13) through the value of the constants K and M . If p
is Gaussian, then the Hessian ∇2 log p is the negative inverse of the covariance matrix. It is
verified in Guth et al. (2022a, Appendix S5) that in this case, the assumptions of Theorem 3.2
are satisfied. Furthermore, the constants K and M , and hence the number of discretization
steps, are controlled using the condition number of Σ. We thus conjecture that non-Gaussian
processes with an ill-conditioned covariance matrix will require many discretization steps to
have a small error. This will be verified numerically. As we now explain, such processes are
ubiquitous in physics and natural image datasets.

Multiscale processes. Most images have variations on a wide range of scales. They require
to use many time steps to sample using an SGM, because their score is not well-conditioned.
This is also true for a wide range of phenomena encountered in physics, biology, or economics
(Kolmogorov, 1962; Mandelbrot, 1983). We define a multiscale process as a stationary process
whose power spectrum has a power law decay. The stationarity implies that its covariance is
diagonalized in a Fourier basis. Its eigenvalues, which then coincide with its power spectrum,
have a power law decay defined by

P (ω) ∼ (ξη + |ω|η)−1, (3.14)
where η > 0 and 2π/ξ is the maximum correlation length. Physical processes near phase
transitions have such a power-law decay, but it is also the case of many disordered systems
such as fluid and gas turbulence. Natural images also typically define stationary processes.
Their power spectrum satisfy this property with η = 2 and 2π/ξ ≈ L for images of size L× L.
To efficiently synthesize images and more general multiscale signals, we must eliminate the
ill-conditioning properties of the score. This is done by applying a wavelet transform.

3.3 Wavelet score-based generative models
The numerical complexity of the SGM algorithm depends on the number of time steps, which
itself depends upon the regularity of the score. We show that an important acceleration is
obtained by factorizing the data distribution into normalized wavelet conditional probability
distributions, which are closer to a white Gaussian distribution, and so whose score is better-
conditioned.

3.3.1 Wavelet whitening and cascaded SGMs

Normalized orthogonal wavelet coefficients. Let x be the input signal of width L and
dimension d = Ln, with n = 2 for images. We write xj its low-frequency approximation
subsampled at intervals 2j , of size (2−jL)n, with x0 = x. At each scale 2j−1 ≥ 1, a fast wavelet
orthogonal transform decomposes xj−1 into (x̄j , xj) where x̄j are the wavelet coefficient which
carries the higher frequency information over 2n−1 signals of size (2−jL)n (Mallat, 1989). They
are calculated with convolutional and subsampling operators G and Ḡ specified in Appendix B.2:

xj = γ−1
j Gxj−1 and x̄j = γ−1

j Ḡ xj−1 . (3.15)

50



Section 3.3. Wavelet score-based generative models

The normalization factor γj guarantees that E[∥x̄j∥2] = (2n − 1)(2−jL)n. We consider wavelet
orthonormal filters where (G, Ḡ) is a unitary operator, i.e.,

ḠGT = GḠT = 0 and GTG+ ḠTḠ = Id .

It results that xj−1 is recovered from (x̄j , xj) with

xj−1 = γj G
Txj + γj Ḡ

Tx̄j . (3.16)

The wavelet transform is computed over J ≈ log2 L scales by iterating J times on (3.15). The
last xJ has a size (2−JL)n ≈ 1. Appendix B.2 contains a more detailed introduction to the
wavelet transform. The choice of wavelet filters G and Ḡ specifies the properties of the wavelet
transform and the number of vanishing moments of the wavelet.

Renormalized probability distribution. A conditional wavelet renormalization factorizes
the distribution p(x) of signals x into conditional probabilities over wavelet coefficients:

p(x) = α
∏J
j=1 p̄j(x̄j |xj) pJ(xJ) . (3.17)

where α (the Jacobian) depends upon all γj .
Although p(x) is typically highly non-Gaussian, the factorization (3.17) involves distributions

that are closer to Gaussians. The largest scale distribution pJ is usually close to a Gaussian
when the image has independent structures, because xJ is an averaging of x over large domains
of size 2J . In images, the wavelet coefficients x̄j are usually sparse and thus have a highly non-
Gaussian distribution; however, it has been observed (Wainwright and Simoncelli, 1999) that
their conditional distributions p̄j(x̄j |xj) become much more Gaussian, due to dependencies of
wavelet coefficients across scales. Furthermore, because of the renormalization, the normalized
wavelet coefficients x̄j have a white spectrum, as opposed to a power-law decay for xj , which im-
plies they are closer to a white Gaussian distribution. In statistical physics, the analysis of high
frequencies conditioned by lower frequencies have been studied in Wilson (1983). More recently,
normalized wavelet factorizations (3.17) have been introduced in physics to implement renor-
malization group calculations, and model probability distributions with maximum likelihood
estimators near phase transitions (Marchand et al., 2022).

Wavelet score-based generative model. Instead of computing a Score-based Generative
Model (SGM) of the distribution p(x), a Wavelet Score-based Generative Model (WSGM) applies
an SGM at the coarsest scale pJ(xJ) and then on each conditional distribution p̄j(x̄j |xj) for
j ≤ J . It is thus a cascaded SGM, similarly to Ho et al. (2022); Saharia et al. (2021), but
calculated on p̄j(x̄j |xj) instead of pj(xj−1|xj). The normalization of wavelet coefficients x̄j
effectively produces a whitening which can considerably accelerate the algorithm by reducing
the number of time steps. This is not possible on xj−1 because its covariance is ill-conditioned.
It will be proved for Gaussian processes.

A forward noising process is computed on each x̄j for j ≤ J and xJ :

dx̄j,t = −x̄j,t dt+
√

2dw̄j,t and dxJ,t = −xJ,t dt+
√

2dwJ,t, (3.18)

where the w̄j,t, wJ,t are Brownian motions. Since x̄j is nearly white and has Gaussian properties,
this diffusion converges much more quickly than if applied directly on x. Using (3.4) or (3.5),
we compute a score function sJ,t(xJ,t) which approximates the score ∇ log pJ,t(xJ,t). For each
j ≤ J we also compute the conditional score s̄j,t(x̄j,t|xj) which approximates ∇ log p̄j,t(x̄j,t|xj).

The inverse generative process is computed from coarse to fine scales as follows. At the
largest scale 2J , we sample the low-dimensional xJ by discretizing the inverse SDE. Similarly to
(3.6), the generative process is given by

xJ,tk+1
= xJ,tk + δk{xJ,tk + 2sJ,tk(xJ,tk)}+

√
2δkzJ,k, zJ,k

i.i.d.∼ N (0, Id). (3.19)

51



Chapter 3. Wavelet Score-Based Generative Models

For j going from J to 1, we then generate the wavelet coefficients x̄j conditionally to the
previously calculated xj , by keeping the same time discretization schedule at all scales:

x̄j,tk+1
= x̄j,tk + δk{x̄j,tk + 2s̄j,tk(x̄j,tk |xj)}+

√
2δk zj,k, zj,k

i.i.d.∼ N (0, Id). (3.20)

The inverse wavelet transform then approximately computes a sample of xj−1 from (x̄j,0, xj):

x̃j−1 = γj G
Txj + γj Ḡ

Tx̄j,0. (3.21)

The generative process is illustrated in Figure 3.1 and its pseudocode is given in Algorithm B.1
in Appendix B.1. The appendix also verifies that if x is of size d then the numerical complexity
of the generation is O(Nd), where N is the number of time steps, which is the same at each
scale. For multiscale processes, we shall see that the number of time steps N does not depend
upon d to reach a fixed error measured with a KL divergence.

Related work. Multi-scale representations, based on wavelets or not, have been incorporated
in many generative modeling approaches in order to increase generation quality and sampling
efficiency. Specifically, they have been shown to improve results for auto-encoders (Chen et al.,
2018), GANs (Gal et al., 2021) and normalizing flows (Li, 2021). Closer in spirit to our work,
Yu et al. (2020) introduces Wavelet Flow, a normalizing flow with a cascade of layers generating
wavelet coefficients conditionally on lower-scales, then aggregating them with an inverse wavelet
transform. This method yields training time acceleration and high-resolution (1024 × 1024)
generation.

WSGM is closely related to other cascading diffusion algorithms, such as the ones introduced
in Ho et al. (2022); Saharia et al. (2021); Dhariwal and Nichol (2021). The main difference lies
in that earlier works on cascaded SGMs do not model the wavelet coefficients {x̄j}

J
j=1 but the

low-frequency coefficients {xj}Jj=1. As a result, cascaded models do not explicitly exploit the
whitening properties of the wavelet transform, nor the fact that conditional wavelet distributions
are often nearly Gaussian, and the mechanisms behind the acceleration remain implicit. We also
point out the recent work of Jing et al. (2022) which, while not using the cascading framework,
drop subspaces from the noising process at different times. This allows using only one SDE to
sample approximately from the data distribution. However, the reconstruction is still computed
with respect to {xj}Jj=1 instead of the wavelet coefficients.

Finally, we highlight that our work could be combined with other acceleration techniques
such as the ones of Jolicoeur-Martineau et al. (2021); Liu et al. (2022a); Zhang and Chen (2022);
San-Roman et al. (2021); Nachmani et al. (2021); Song et al. (2020); Ho et al. (2020); Kong and
Ping (2021); Luhman and Luhman (2021); Salimans and Ho (2022); Xiao et al. (2021) in order
to improve the empirical results of WSGM.

3.3.2 Discretization and accuracy for Gaussian processes

We now illustrate Theorem 3.1 and the effectiveness of WSGM on Gaussian multiscale processes.
We use the whitening properties of the wavelet transform to show that the time complexity
required in order to reach a given error is linear in the image dimension.

The following result proves that the normalization of wavelet coefficients performs a pre-
conditioning of the covariance, whose eigenvalues then remain of the order of 1. This is a
consequence of a theorem proved by Meyer (1992) on the representation of classes of singular
operators in wavelet bases. As a result, the number of iterations N = T/δ required to reach an
error ε is independent of the dimension.

Theorem 3.3. Let x be a Gaussian stationary process of power spectrum P (ω) = c (ξη+ |ω|η)−1

with η > 0 and ξ > 0. If the wavelet has a compact support, q ≥ η vanishing moments and is

52



Section 3.4. Acceleration with WSGM: numerical results

C q, then the first-order terms ET and Eδ in the sampling error of WSGM KL pp̃0 are such that
for any ε > 0, there exists C > 0 such that for any δ, T ,

(1/d)(ET + Eδ) ≤ ε and N = T/δ ≤ Cε−2. (3.22)

To prove this result, we show that the conditioning number of the covariance matrix of the
renormalized wavelet coefficients does not depend on the dimension, by using Sobolev norm
equivalences (Jaffard, 1992; Meyer, 1992). We conclude upon combining this result, the cascad-
ing property of the Kullback-Leibler divergence and an extension of Theorem 3.1 to the setting
with non-zero mean. The detailed proof is in the original publication (Guth et al., 2022a,
Appendix S6).

Numerical results. We illustrate Theorem 3.3 on a Gaussian field x, whose power spectrum
P has a power law decay (3.14). In Figure 3.2, we display the sup-norm between P and the
power spectrum P̂ of the samples obtained using either vanilla SGM or WSGM with uniform
stepsize δk = δ. In the case of vanilla SGM, the number N(ε) of time steps needed to reach a
small error ∥P − P̂∥ = ε increases with the size of the image L (Fig. 3.2, right). Equation (3.10)
suggests that N(ε) scales like a power of the conditioning number κ of Σ, which is for multiscale
Gaussian processes κ ∼ Lη, for images of size L × L. In the WSGM case, we sample from the
conditional distributions p̄j of wavelet coefficients x̄j given low frequencies xj . At a scale j, the
conditioning numbers κ̄j of the conditional covariance become dimension-independent, removing
the dependency of N(ε) on the image size L as suggested by (3.22).

Figure 3.2: Left and middle: evolution of the error on the estimated covariance matrix using either
SGM or WSGM w.r.t. the number of stepsizes used in the model (T = 10 is fixed). Right: number N(ε)
of discretization steps required to reach a given error ε = 0.1 using either SGM or WSGM.

3.4 Acceleration with WSGM: numerical results

For multiscale Gaussian processes, we proved that with WSGMs, the number of time steps N(ε)
to reach a fixed error ε does not depend on the signal size, as opposed to SGMs. This section
shows that this result applies to non-Gaussian multiscale processes. We consider a physical
process near a phase transition and images from the CelebA-HQ database (Karras et al., 2018).

3.4.1 Physical processes with scalar potentials

Gaussian stationary processes are maximum entropy processes conditioned by second order mo-
ments defined by a circulant matrix. More complex physical processes are modeled by imposing
a constraint on their marginal distribution, with a so-called scalar potential. The marginal
distribution of x is the probability distribution of an image pixel x(u), which does not depend
upon u if x is stationary. Maximum entropy processes conditioned by second order moments and

53



Chapter 3. Wavelet Score-Based Generative Models

100 101 102

|ω|

104

105

106

107

108

109

p
ow

er
sp

ec
tr

um

Figure 3.3: Left: error between ground-truth φ4 datasets in various dimensions L, and the synthetized
datasets with SGM and WSGM, for various number of discretization steps. Middle: realizations of φ4

(top) and WSGM samples (bottom). Right: power spectrum of φ4 for L = 256.

marginal distributions have a probability density which is a Gibbs distribution p(x) = Z−1 e−E(x)

with
E(x) = 1

2x
TCx+∑

u V (x(u)) , (3.23)

where C is a circulant matrix and V : R→ R is a scalar potential. Appendix B.4 explains how
to parameterize V as a linear combination of a family of fixed elementary functions. The φ4

model is a particular example where C = −∆ is the negative Laplacian and V is a fourth-order
polynomial, adjusted in order to impose that x(u) ≈ ±1 with high probability. For so-called
critical values of these parameters, the resulting process becomes multiscale with long range
interactions and a power law spectrum, see Figure 3.3-(c).

We train SGMs and WSGMs on critical φ4 processes of different sizes; for the score model
sθ, we use a simple linear parameterization detailed in Appendix B.4. To evaluate the quality
of the generated samples, it is sufficient to verify that these samples have the same second order
moment and marginals as φ4. We define the error metric as the sum of the L2 error on the
power spectrum and the total-variation distance between marginal distributions. Figure 3.3-(a)
shows the decay of this error as a function of the number of time steps used in an SGM and
WSGM with a uniform discretization. With vanilla SGM, the loss has a strong dependency in
L, but becomes almost independent of L for WSGM. This empirically verifies the claim that an
ill-conditioned covariance matrix leads to slow sampling of SGM, and that WSGM is unaffected
by this issue by working with the conditional distributions of normalized wavelet coefficients.

3.4.2 Scale-wise time reduction in natural images

Images are highly non-Gaussian multiscale processes whose power spectrum has a power law
decay. We now show that WSGM also provides an acceleration over SGM in this case, by being
independent of the image size.

We focus on the CelebA-HQ dataset (Liu et al., 2015) at the 128× 128 resolution. Its power
spectrum has a power law decay, as shown in Figure 3.4, and it thus suffers from ill-conditioning,
even though it is a non-stationary process. We compare SGM (Ho et al., 2020) samples at the
128 × 128 resolution with WSGM samples which start from the 32 × 32 resolution. Though
smaller, the 32× 32 resolution still suffers from a power law decay of its spectrum over several
orders of magnitude. The reason why we limit this coarsest resolution is because border effects
become dominant at lower image sizes. To simplify the handling of border conditions, we use
Haar wavelets.

Following Nichol and Dhariwal (2021), the global scores sθ(x) are parameterized by a neural
network with a U-Net architecture. It has 3 residual blocks at each scale, and includes multi-head
attention layers at lower scales. The conditional scores sθ(x̄j |xj) are parameterized in the same
way, and the conditioning on the low frequencies xj is done with a simple input concatenation
along channels (Nichol and Dhariwal, 2021; Saharia et al., 2021). The details of the architecture

54



Section 3.4. Acceleration with WSGM: numerical results

100 101

|ω|

107

109

1011

p
ow

er
sp

ec
tr

um

101 102 103

Number of diffusion steps per scale

20

40

60

80

100

120

140

F
ID

SGM

WSGM

101 102 103

Number of diffusion steps per scale

20

40

60

80

100

120

140

F
ID

SGM

L = 128

L = 64

L = 32

101 102 103

Number of diffusion steps per scale

20

40

60

80

100

120

140

F
ID

WSGM

L = 128

L = 64

L = 32

Figure 3.4: Top. (a): Generations from SGM with 16 discretization steps. (b): Generations from
WSGM with 16 discretization steps at each scale. (c): Power spectrum of CelebA-HQ. Bottom. (a):
Evolution of the FID w.r.t. the number of diffusion steps for SGM and WSGM with L = 128. (b):
Evolution of the FID w.r.t. the number of diffusion steps for SGM at several image sizes L. (c) Evolution
of the FID w.r.t. the number of diffusion steps for WSGM at several image sizes L.

are in Appendix B.5. We use a uniform discretization of the backward SDE to stay in the setting
of Theorem 3.2, and show that WSGM still obtains satisfactory results in this case.

The generation results are given in Figure 3.4. With the same computational budget of 16
discretizations steps at the largest scale (iterations at smaller scales having a negligible cost due
to the exponential decrease in image size), WSGM achieves a much better perceptual generation
quality. Notably, SGM generates noisy images due to discretization errors. This is confirmed
quantitatively with the Fréchet Inception Distance (FID) (Heusel et al., 2017). The FID of
the WSGM generations decreases with the number of steps, until it plateaus. This plateau is
reached with at least 2 orders of magnitude less steps for WSGM than SGM. This number of
steps is also independent of the image size for WSGM, thus confirming the intuition given in the
Gaussian case by Theorems 3.1 and 3.3. Our results confirm that vanilla SGM on a wide range
of multiscale processes, including natural images, suffers from ill-conditioning, in the sense that
the number of discretization steps grows with the image size. WSGM, on the contrary, leads
to uniform discretization schemes whose number of steps at each scale does not depend on the
image size.

We also stress that there exists many techniques (Kadkhodaie and Simoncelli, 2021; Jolicoeur-
Martineau et al., 2021; Liu et al., 2022a; Zhang and Chen, 2022; San-Roman et al., 2021; Nach-
mani et al., 2021; Song et al., 2020; Kong and Ping, 2021; Ho et al., 2020; Luhman and Luhman,
2021; Salimans and Ho, 2022; Xiao et al., 2021) to accelerate the sampling of vanilla SGMs, with
sometimes better FID-time complexity tradeoff curves. Notably, the FID plateaus at a relatively
high value of 20 because the coarsest resolution 32× 32 is still ill-conditioned, and thus requires
thousands of steps with a non-uniform discretization schedule to achieve FIDs less than 10 with
vanilla SGMs (Nichol and Dhariwal, 2021). Such improvements (including proper handling of
border conditions) are beyond of the scope of this chapter. The contribution of WSGM is rather
to show the reason behind this sampling inefficiency and mathematically prove in the Gaussian
setting that wavelet decompositions of the probability distribution allows solving this problem.
Extending this theoretical result to a wider class of non-Gaussian multiscale processes, and
combining WSGM with other sampling accelerations, are interesting research directions.

55



Chapter 3. Wavelet Score-Based Generative Models

3.5 Discussion
This chapter introduces a Wavelet Score-based Generative Model (WSGM) which applies an
SGM to normalized wavelet coefficients conditioned by lower frequencies. We prove that the
number of steps in SGMs is controlled by the regularity of the score of the target distribution.
For multiscale processes such as images, it requires a considerable number of time steps to
achieve a good accuracy, which increases quickly with the image size. We show that a WSGM
eliminates ill-conditioning issues by normalizing wavelet coefficients. As a result, the number of
steps in WSGM does not increase with the image size. We illustrated our results on Gaussian
distributions, physical processes, and image datasets.

One of the main limitations of the work presented in this chapter is that the theoretical anal-
ysis of the advantages brought by the wavelet conditional factorization is limited to the Gaussian
case. For natural images, we observe empirically a reduced sampling complexity, which we moti-
vated from a well-conditioned conditional covariance and thus a more regular conditional score,
but it is not clear if this argument can be made more precise. This observation is complemented
by the results of Chapter 2, which show that the wavelet conditional factorization reveals the
much stronger property of conditional log-concavity for multiscale physical fields. Wavelet score-
based generative models of natural images are further studied in Chapter 4, which focuses on
the estimation of the conditional scores.

56



Chapter

4
Multiscale Local Conditional
Models of Images

Chapter content
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Markov wavelet conditional models . . . . . . . . . . . . . . . . . . . 59
4.3 Score-based markov wavelet conditional models . . . . . . . . . . . . 60
4.4 Markov wavelet conditional denoising . . . . . . . . . . . . . . . . . . 62
4.5 Markov wavelet conditional super-resolution and synthesis . . . . . 64
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

We have shown in Chapter 3 that a multiscale conditional factorization of image distribu-
tions can reduce the sampling complexity of score-based diffusion models from quadratic (Chen
et al., 2022a) to (empirically) linear in the dimension. However, the major theoretical challenge
remains to understand how deep neural networks manage to learn the scores of the probabil-
ity distribution and thereby capture complex global statistical structure, apparently without
suffering from the curse of dimensionality.

In this chapter, we show that the multiscale conditional factorization studied in Chapters 2
and 3 allows reducing the dimensionality of the score matching task. This is achieved by as-
suming a stationary local Markov model for wavelet coefficients conditioned on coarser-scale
coefficients, similarly to the one introduced by Marchand et al. (2022) and used in Chapter 2.
We instantiate this model using convolutional neural networks (CNNs) with local receptive fields,
which enforce both the stationarity and Markov properties. Global structures are captured using
a CNN with receptive fields covering the entire (but small) low-pass image. We test this model
on a dataset of face images, which are highly non-stationary and contain large-scale geometric
structures. Remarkably, denoising, super-resolution, and image synthesis results all demonstrate
that these structures can be captured with significantly smaller conditioning neighborhoods than
required by a Markov model implemented in the pixel domain. Our results show that score esti-
mation for large complex images can be reduced to low-dimensional Markov conditional models
across scales, partially alleviating the curse of dimensionality.

This chapter is adapted from the following publication: Zahra Kadkhodaie, Florentin Guth,
Stéphane Mallat, and Eero P Simoncelli. Learning multi-scale local conditional probability
models of images. In International Conference on Learning Representations, 2023.

4.1 Introduction
Deep neural networks (DNNs) have produced dramatic advances in synthesizing complex images
and solving inverse problems, all of which rely (at least implicitly) on prior probability models.
Of particular note is the recent development of “diffusion methods” (Sohl-Dickstein et al., 2015),
in which a network trained for image denoising is incorporated into an iterative algorithm to
draw samples from the prior (Song and Ermon, 2019; Ho et al., 2020; Song et al., 2021b), or



Chapter 4. Multiscale Local Conditional Models of Images

to solve inverse problems by sampling from the posterior (Kadkhodaie and Simoncelli, 2021;
Cohen et al., 2021; Kawar et al., 2021; Daras et al., 2022). The prior in these procedures is
implicitly defined by the learned denoising function, which depends on the prior through the
score (the gradient of the log density). But density or score estimation is notoriously difficult for
high-dimensional signals because of the curse of dimensionality: worst-case data requirements
grow exponentially with the data dimension. How do neural network models manage to avoid
this curse?

Traditionally, density estimation is made tractable by assuming simple low-dimensional mod-
els, or structural properties that allow factorization into products of such models. For example,
the classical Gaussian spectral model for images or sounds rests on an assumption of translation-
invariance (stationarity), which guarantees factorization in the Fourier domain. Markov random
fields (Geman and Geman, 1984) assume localized conditional dependencies, which guarantees
that the density can be factorized into terms acting on local, typically overlapping neighborhoods
(Clifford and Hammersley, 1971). In the context of images, these models have been effective
in capturing local properties, but are not sufficiently powerful to capture long-range dependen-
cies. Multiscale image decompositions offered a mathematical and algorithmic framework bet-
ter suited for the structural properties of images (Burt and Adelson, 1983; Mallat, 2008). The
multiscale representation facilitates handling of larger structures, and local (Markov) models
have captured these probabilistically (e.g., Chambolle et al. (1998); Malfait and Roose (1997);
Crouse et al. (1998); Buccigrossi and Simoncelli (1999); Paget and Longstaff (1998); Mihçak
et al. (1999); Wainwright et al. (2001b); Şendur and Selesnick (2002); Portilla et al. (2003); Cui
and Wang (2005); Lyu and Simoncelli (2009)). Recent work, inspired by renormalization group
theory in physics, has shown that probability distributions with long-range dependencies can be
factorized as a product of Markov conditional probabilities over wavelet coefficients (Marchand
et al., 2022). Although the performance of these models is eclipsed by recent DNN models,
the concepts on which they rest—stationarity, locality and multiscale conditioning—are still of
fundamental importance. Here, we use these tools to constrain and study a score-based diffusion
model.

A number of recent DNN image synthesis methods—including variational auto-encoders
(Chen et al., 2018), generative adversarial networks (Gal et al., 2021) normalizing flow models
(Yu et al., 2020; Li, 2021)), and diffusion models (Ho et al., 2022)—use coarse-to-fine strategies,
generating a sequence of images of increasing resolution, each seeded by its predecessor. With the
exception of the last, these do not make explicit the underlying conditional densities, and none
impose locality restrictions on their computation. On the contrary, the stage-wise conditional
sampling is typically accomplished with huge DNNs (up to billions of parameters), with global
receptive fields.

Here, we develop a low-dimensional probability model for images decomposed into multi-
scale wavelet sub-bands. Following the renormalization group approach, the image probability
distribution is factorized as a product of conditional probabilities of its wavelet coefficients con-
ditioned by coarser scale coefficients. We assume that these conditional probabilities are local
and stationary, and hence can be captured with low-dimensional Markov models. Each con-
ditional score can thus be estimated with a conditional CNN (cCNN) with a small receptive
field (RF). The score of the coarse-scale low-pass band (a low-resolution version of the image) is
modeled using a CNN with a global RF, enabling representation of large-scale image structures
and organization. We test this model on a dataset of face images, which present a challenging
example because of their global geometric structure. Using a coarse-to-fine anti-diffusion strat-
egy for drawing samples from the posterior (Kadkhodaie and Simoncelli, 2021), we evaluate
the model on denoising, super-resolution, and synthesis, and show that locality and stationarity
assumptions hold for conditional RF sizes as small as 9 × 9 without harming performance. In
comparison, the performance of CNNs restricted to a fixed RF size in the pixel domain dramat-
ically degrades when the RF is reduced to such sizes. Thus, high-dimensional score estimation

58



Section 4.2. Markov wavelet conditional models

W

WT
W

WTW

WT

Figure 4.1: Markov wavelet conditional model structure. At each scale j, an orthogonal wavelet trans-
form W decomposes an image xj−1 into three wavelet channels, x̄j, containing vertical, horizontal, and
diagonal details, and a low-pass channel xj containing a coarse approximation of the image, all subsam-
pled by a factor of two. At each scale j, we assume a Markov wavelet conditional model, in which the
probability distribution of any wavelet coefficient of x̄j (here, centered on the left eye), conditioned on
values of xj and x̄j in a local spatial neighborhood (red squares), is independent of all coefficients of x̄j

outside this neighborhood.

for images can be reduced to low-dimensional Markov conditional models, alleviating the curse
of dimensionality.

4.2 Markov wavelet conditional models

Images are high-dimensional vectors. Estimating an image probability distribution or its score
therefore suffer from the curse of dimensionality, unless one limits the estimation to a relatively
low-dimensional model class. This section introduces such a model class as a product of Markov
conditional probabilities over multiscale wavelet coefficients.

Markov random fields (Dobrushin, 1968; Sherrington and Kirkpatrick, 1975) define low-
dimensional models by assuming that the probability distribution has local conditional depen-
dencies over a graph, which is known a priori. One can then factorize the probability density
into a product of conditional probabilities, each defined over a small number of variables (Clif-
ford and Hammersley, 1971). Markov random fields have been used to model stationary texture
images, with conditional dependencies within small spatial regions of the pixel lattice. At a
location u, such a Markov model assumes that the pixel value x(u), conditioned on pixel values
x(v) for v in a neighborhood of u, is independent from all pixels outside this neighborhood.
Beyond stationary textures, however, the chaining of short-range dependencies in pixel domain
has proven insufficient to capture the complexity of long-range geometrical structures. Many
variants of Markov models have been proposed (e.g., Geman and Geman (1984); Malfait and
Roose (1997); Cui and Wang (2005)), but none have demonstrated performance comparable to
recent deep networks while retaining a local dependency structure.

Based on the renormalization group approach in statistical physics (Wilson, 1971), new prob-
ability models are introduced in Marchand et al. (2022), structured as a product of probabilities
of wavelet coefficients conditioned on coarser-scale values, with spatially local dependencies.
These Markov conditional models have been applied to ergodic stationary physical fields, with
simple conditional Gibbs energies that are parameterized linearly. Here, we generalize such mod-
els by parameterizing conditional Gibbs energy gradients with deep conditional convolutional
neural networks having a local RF. This yields a class of Markov wavelet conditional models
that can generate complex structured images, while explicitly relying on local dependencies to
reduce the model dimensionality.

An orthonormal wavelet transform uses a convolutional and subsampling operator W defined
with conjugate mirror filters (Mallat, 2008), to iteratively compute wavelet coefficients (see
Figure 4.1). Let x0 be an image of N × N pixels. For each scale j > 1, the operator W

59



Chapter 4. Multiscale Local Conditional Models of Images

decomposes xj−1 into
Wxj−1 = (x̄j , xj),

where xj is a lower-resolution image and x̄j is an array of three wavelet coefficient images,
each with dimensions N/2j ×N/2j , as illustrated in Figure 4.1. The inverse wavelet transform
iteratively computes xj−1 = W T (x̄j , xj).

We now introduce the wavelet conditional factorization of probability models. Since W
is orthogonal, the probability density of xj−1 is also the joint density of (xj , x̄j). It can be
factorized by conditioning on xj :

p(xj−1) = p(xj , x̄j) = p(xj)p(x̄j |xj).

This is performed J times, so that the lowest resolution image xJ is small enough, which yields

p(x) = p(xJ)
J∏
j=1

p(x̄j |xj). (4.1)

The conditional distributions p(x̄j |xj) specify the dependencies of image details at scale j con-
ditioned on the coarser scale values, and may be expressed in terms of a conditional Gibbs
energy

p(x̄j |xj) = Zj(xj)−1 e−Ej(x̄j |xj), (4.2)

where Zj(xj) is the normalization constant for each xj . The conditional Gibbs energies (4.2)
have been used in the wavelet conditional renormalization group approach to obtain a stable
parameterization of the probability model even at critical phase transitions, when the parame-
terization of the global Gibbs energy becomes singular (Marchand et al., 2022).

Local wavelet conditional renormalization group models (Marchand et al., 2022) further im-
pose that p(x̄j |xj) is a conditional Markov random field. That is, the probability distribution of
a wavelet coefficient of x̄j conditioned on values of xj and x̄j in a restricted spatial neighborhood
is independent of all coefficients of x̄j and x̄ outside this neighborhood (see Figure 4.1). The
Hammersley-Clifford theorem states that this Markov property is equivalent to imposing that
Ej can be written as a sum of potentials, which only depends upon values of x̄j and xj over
local cliques (Clifford and Hammersley, 1971). This decomposition substantially alleviates the
curse of dimensionality, since one only needs to estimate potentials over neighborhoods of a fixed
size which does not grow with the image size. To model ergodic stationary physical fields, the
local potentials of the Gibbs energy Ej have been parameterized linearly using physical models
Marchand et al. (2022).

We generalize Markov wavelet conditional models by parameterizing the conditional score
with a conditional CNN (cCNN) having small receptive fields (RFs):

−∇x̄j
log p(x̄j |xj) = ∇x̄j

Ej(x̄j |xj). (4.3)

Computing the score (4.3) is equivalent to specifying the Gibbs model (4.2) without calculating
the normalization constants Zj(xj), since these are not needed for noise removal, super-resolution
or image synthesis applications.

4.3 Score-based markov wavelet conditional models

Score-based diffusion models have produced impressive image generation results (e.g., Song et al.
(2021b); Ho et al. (2022); Rombach et al. (2022); Saharia et al. (2022); Ramesh et al. (2022)). To
capture large-scale properties, however, these networks require RFs that encompass the entire
image. Our score-based wavelet conditional model leverages the Markov assumption to compute

60



Section 4.3. Score-based markov wavelet conditional models

the score using cCNNs with small receptive fields, offering a low-dimensional parameterization
of the image distribution while retaining long-range geometric structures.

Let y = x + z be a noisy observation of a clean image x ∈ RN×N drawn from p(x), with
z ∼ N (0, σ2Id) a sample of Gaussian white noise. The minimum mean squared error (MMSE)
estimate of the true image is well-known to be the conditional mean of the posterior

x̂(y) =
∫
xp(x|y)dx. (4.4)

This integral can be re-expressed in terms of the score

x̂(y) = y + σ2∇y log p(y). (4.5)

This remarkable result, published in Miyasawa (1961), exposes a direct and explicit relationship
between the score of probability distributions and denoising (we reproduce the proof in Ap-
pendix C.2 for completeness). Note that the relevant density is not the image distribution, p(x),
but the noisy observation density p(y). This density converges to p(x) as the noise variance σ2

goes to zero.
Given this relationship, the score can be approximated with a parametric mapping optimized

to estimate the denoised image, f(y) ≈ x̂(y). Specifically, we implement this mapping with a
CNN, and optimize its parameters by minimizing the denoising squared error ||f(y)−x||2 over a
large training set of images and their noise-corrupted counterparts. Given eq. (4.5), the denoising
residual, f(y)−y, provides an approximation of the variance-weighted score, σ2∇y log p(y). Also
known as denoising score matching (Vincent, 2011), such denoiser-estimated score functions have
been used in iterative algorithms for drawing samples from the density (Song et al., 2021b; Ho
et al., 2020; Dhariwal and Nichol, 2021; Ho et al., 2022), or solving inverse problems (Kadkhodaie
and Simoncelli, 2021; Cohen et al., 2021; Kawar et al., 2021; Laumont et al., 2022).

To model the conditional wavelet distribution p(x̄j |xj), we parameterize the score∇ȳj
log p(ȳj |xj)

of noisy wavelet coefficients ȳj conditioned on a clean low-pass image xj with a cCNN (eq. (4.3))
as in Chapter 3. Specifically, the cCNN takes as input three noisy wavelet detail channels, along
with the corresponding low-pass channel, and generates three estimated detail channels. The
network is trained to minimize mean square distance between x̄j and fj(ȳj , xj). Thanks to a
conditional extension of eq. (4.5), an optimal network computes fj(ȳj , xj) = ∇ȳj

log p(ȳj |xj).
Additionally, at the coarsest scale J , a CNN denoiser fJ(yJ) is trained to estimate the score of
the low-pass band, ∇yJ

log p(xJ) by minimizing mean square distance between xJ and fJ(yJ).
The following theorem proves that the Markov wavelet conditional property is equivalent to

imposing that the cCNN RFs are restricted to the conditioning neighborhoods. The RF of a
given element of the network response is defined as the set of input image pixels on which this
element depends.

Theorem 4.1. The wavelet conditional density p(x̄j |xj) is Markovian over a family of condi-
tioning neighborhoods if and only if the conditional score ∇x̄j

log p(x̄j |xj) can be computed with
a network whose RFs are included in these conditioning neighborhoods.

The proof of the theorem is provided in Appendix C.1. Note that even if the conditional
distribution of clean wavelet coefficients p(x̄|xj) satisfies a local Markov property, the noisy
distribution p(ȳj |xj) is in general not Markovian. However, we shall parameterize the scores
with a cCNN with small RFs and hence show that both the noisy and clean distributions are
Markovian. At each scale 1 ≤ j ≤ J , the cCNN has RFs that are localized in both ȳj and xj ,
and have a fixed size over all scales, independent of the original image size. From Theorem 4.1,
this defines the Markov conditioning neighborhoods of the learned model. The effect of the RF
size is examined in the numerical experiments of Section 4.4.

Parameterizing the score with a convolutional network further implies that the conditional
probability p(x̄j |xj) is stationary on the wavelet sampling lattice at scale j. Despite these strong

61



Chapter 4. Multiscale Local Conditional Models of Images

cCNN

cCNN

CNN

WT

W

W

WT

Figure 4.2: Wavelet conditional denoiser architecture used to estimate the score (illustrated for a two-
scale decomposition). The input noisy image y (lower left) is decomposed by recursive application of a
fast orthogonal wavelet transform W into successive low-pass images yj (blue) and three wavelet detail
images ȳj (red). The coarsest low-pass image yJ is denoised using a CNN with a global receptive field to
estimate x̂J . At all other scales, a local conditional CNN (cCNN) estimates ˆ̄xj from ȳj conditioned on
x̂j, from which WT recovers x̂j−1.

simplifications, we shall see that these models models are able to capture complex long-range
image dependencies in highly non-stationary image ensembles such as centered faces. This relies
on the low-pass CNN, whose RF is designed to cover the entire image xJ , and thus does not
enforce local Markov conditioning nor stationarity. The product density of eq. (4.1) is therefore
not stationary.

4.4 Markov wavelet conditional denoising

We now evaluate our Markov wavelet conditional model on a denoising task. We use the trained
CNNs to define a multiscale denoising architecture, illustrated in Figure 4.2. The wavelet trans-
form of the input noisy image y is computed up to a coarse-scale J . The coarsest scale image is
denoised by applying the denoising CNN learned previously: x̂J = fJ(yJ). Then for J ≥ j ≥ 1,
we compute the denoised wavelet coefficients conditioned on the previously estimated coarse
image: ˆ̄xj = f(ȳj , x̂j). We then recover a denoised image at the next finer scale by applying an
inverse wavelet transform: x̂j−1 = W T (ˆ̄xj , x̂j). At the finest scale we obtain the denoised image
x̂ = x̂0.

Because of the orthogonality of W , the global MSE can be decomposed into a sum of wavelet
MSEs at each scale, plus the coarsest scale error: ∥x − x̂∥2 = ∑J−1

j=1 ∥x̄j − ˆ̄xj∥2 + ∥xJ − x̂J∥2.
The global MSE thus summarizes the precision of the score models computed over all scales.
We evaluate the peak signal-to-noise ratio (PSNR) of the denoised image as a function of the
noise level, expressed as the PSNR of the noisy image. We use the CelebA dataset (Liu et al.,
2015) at 160 × 160 resolution. We use the simplest of all orthogonal wavelet decompositions,
the Haar wavelet, constructed from separable filters that compute averages and differences of
adjacent pairs of pixel values (Haar, 1910). All denoisers are “universal” (they can operate on
images contaminated with noise of any standard deviation), and “blind” (they are not informed
of the noise level). They all have the same depth and layer widths, and their receptive field
size is controlled by changing the convolutional kernel size of each layer. Appendix C.3 provides
architecture and training details.

Figure 4.3 shows that the multiscale denoiser based on a conditional wavelet Markov model
outperforms a conventional denoiser that implements a Markov probability model in the pixel
domain. More precisely, we observe that when the Markov structure is defined over image pixels,
the performance degrades considerably with smaller RFs (Figure 4.3, left panel), especially at
large noise levels (low PSNR). Images thus contain long-range global dependencies that cannot
be captured by Markov models that are localized within the pixel lattice. On the other hand,

62



Section 4.4. Markov wavelet conditional denoising

38332823181372-3-8

psnr in

38

33

28

23

18

13

7

2

ps
nr

 o
ut

 

RF = 43x43
RF = 23x23
RF = 13x13
RF = 9x9
RF = 5x5
Identity

38332823181372-3-8

psnr in

RF = 43x43
RF = 23x23
RF = 13x13
RF = 9x9
RF = 5x5
only low pass
Identity

Figure 4.3: Comparison of denoiser performance on 160 × 160 test images from the CelebA dataset.
Each panel shows the error of the denoised image as a function of the noise level, both expressed as the
peak signal-to-noise ratio (PSNR). Left: Conventional CNN denoisers with different RF sizes. The blue
curve shows performance of BF-CNN (Mohan et al., 2019). The rest are BF-CNN variants with smaller
RF obtained from setting some intermediate filter sizes to 1× 1. Right: Multiscale denoisers, as depicted
in Figure 4.2, with different cCNN RF sizes. Note that the low-pass denoiser RF is 40× 40 in all cases,
and thus covers the entire low-pass band.

multiscale denoising performance remains nearly the same for RF sizes down to 9 × 9, and
degrades for 5× 5 RFs only at small noise levels (high PSNR) (Figure 4.3, right panel). This is
remarkable considering that, for the finest scale, the 9×9 RF implies conditioning on one percent
of the coefficients. The wavelet conditional score model thus successfully captures long-range
image dependencies, even with small Markov neighborhoods.

It is also worth noting that in the large noise regime (i.e., low PSNR), all multiscale denoisers
(even with RF as small as 5 × 5) significantly outperforms the conventional denoiser with the
largest tested RF size (43 × 43). The dependency on RF size in this regime demonstrates the
inadequacy of local modeling in the pixel domain. On the contrary, the effective neighborhoods
of the multiscale denoiser are spatially global, but operate with spatially-varying resolution.
Specifically, neighborhoods are of fixed size at each scale, but due to the subsampling, cover
larger proportions of the image at coarser scales. The CNN applied to the coarsest low-pass
band (scale J) is spatially global, and the denoising of this band alone explains the performance
at the highest noise levels (magenta curve, Figure 4.3).

To further illustrate this point, consider the denoising examples shown in Figure 4.4. Since
all denoisers are bias-free, they are piecewise linear (as opposed to piecewise affine), providing
some interpretability (Mohan et al., 2019). Specifically, each denoised pixel is computed as
an adaptively weighted sum over the noise input pixels. The last panels show the equivalent
adaptive linear filter that was used to estimate the pixel marked by the green square, which
can be estimated from the associated row of the Jacobian. The top row shows denoising results
of a conventional CNN denoiser for small images that are the size of the network RF. Despite
very heavy noise levels, the denoiser exploits the global structure of the image, and produces
a result approximating the clean image. The second row shows the results after training the
same denoiser architecture on much larger images. Now the adaptive filter is much smaller
than the image, and the denoiser solution fails to capture the global structure of the face.
Finally, the last row shows that the multiscale wavelet conditional denoiser can successfully
approximate the global structure of a face despite the extreme levels of noise. Removing high
levels of noise requires knowledge of global structure. In our multiscale conditional denoiser,
this is achieved by setting the RF size of the low-pass denoiser equal to the entire low-pass
image size, similarly to the denoiser shown on the top row. Then, each successive conditioning
stage provides information at a finer resolution, over ever smaller RFs relative to the coefficient

63



Chapter 4. Multiscale Local Conditional Models of Images

Figure 4.4: Denoising examples. Each row shows clean image, noisy image, denoised image, and the
adaptive filter (one row of the Jacobian of the end-to-end denoising transformation) used by the denoiser
to estimate a specific pixel, indicated in green. The heat-map ranges from red for most negative to black for
most positive values. In the last two rows, the last column shows an enlargement of this adaptive filter, for
enhanced visibility. Images are displayed proportional to their sizes. Top row: 40× 40 images estimated
with a CNN denoiser with RF 40×40. Second row: 160×160 images estimated with a CNN denoiser with
RF 43 × 43. Third row: 160 × 160 images, estimated with the proposed conditional multiscale denoiser
of Figure 4.2. The denoiser uses a 40 × 40 RF for the coarsest scale, and 13 × 13 RFs for conditional
denoising of subsequent finer scales.

lattice. The adaptive filter shown in the last column has a foveated structure: the estimate of
the marked pixel depends on all pixels in the noisy image, but those that are farther away are
only included within averages over larger blocks. Thus, imposing locality in the wavelet domain
lifts the curse of dimensionality without loss of performance, as opposed to a locality (Markov)
assumption in the pixel domain.

4.5 Markov wavelet conditional super-resolution and synthesis

We generate samples from the learned wavelet conditional distributions in order to visually assess
the quality of the model in a super-resolution task. We compare this approach with solving the
super-resolution inverse problem directly using a CNN denoiser operating in the pixel domain.
We also compare the models on image synthesis.

We first give a high-level description of our conditional generation algorithm. The low-
resolution image xJ is used to conditionally generate wavelet coefficients x̄J from the conditional
distribution p(x̄J |xJ). An inverse wavelet transform next recovers a higher-resolution image xJ−1
from both xJ and x̄J . The conditional generation and wavelet reconstruction are repeated J
times, increasing the resolution of the sample at each step. In the end, we obtain a sample
x from the full-resolution image distribution conditioned on the starting low-resolution image
p(x|xJ). x is thus a stochastic super-resolution estimate of xJ .

To draw samples from the distributions p(x̄j |xj) implicitly embedded in the wavelet con-
ditional denoisers, we use the algorithm of Kadkhodaie and Simoncelli (2021), which performs
stochastic gradient ascent on the log-probability obtained from the cCNN using eq. (4.5). This
is similar to score-based diffusion algorithms (Song and Ermon, 2019; Ho et al., 2020; Song et al.,
2021b), but the timestep hyper-parameters require essentially no tuning, since stepsizes are au-
tomatically obtained from the magnitude of the estimated score. Extension to the conditional
case is straightforward. The sampling algorithm is detailed in Appendix C.4. All the cCCN

64



Section 4.5. Markov wavelet conditional super-resolution and synthesis

Figure 4.5: Super-resolution examples. Column 1: original images (320 × 320). Column 2: Low-pass
image of a 3-stage wavelet decomposition (downsampled to 40 × 40) expanded to full size for viewing.
Column 3: Conditional generation of full-resolution images using CNN denoiser with RF of size 43× 43.
Column 4: Coarse-to-fine conditional generation using the multiscale cCNN denoisers, each with RFs of
size 13× 13.

denoisers have a RF size of 13 × 13. Train and test images are from the CelebA HQ dataset
(Karras et al., 2018) and of size 320 × 320. Samples drawn using the conditional denoiser cor-
respond to a Markov conditional distribution with neighborhoods restricted to the RFs of the
denoiser. We compare these with samples from a model with a local Markov neighbhorhood in
the pixel domain. This is done using a CNN with a 40×40 RF trained to denoise full-resolution
images, which approximates the score ∇ log p(x). Given the same low-pass image xJ , we can
generate samples from p(x|xJ) by viewing this as sampling from the image distribution of x
constrained by a linear measurements xJ . This is done with the same sampling algorithm, with
a small modification, again described in Appendix C.4.

Figure 4.5 shows super-resolution samples from these two learned image models. The local
Markov model in the pixel domain generates details that are sharp but artifactual and incoherent
over long spatial distances. On the other hand, the Markov wavelet conditional model produces
much more natural-looking face images. This demonstrates the validity of our model: although
these face images are not stationary (they have global structures shared across the dataset),
and are not Markov in the pixel domain (there are clearly long-range dependencies that operate
across the image), the details can be captured with local stationary Markov wavelet conditional
distributions.

We also evaluated the Markov wavelet conditional model on image synthesis. We first syn-
thesize a 40 × 40 terminal low-pass image using the score, ∇xJ

log p(xJ), obtained from the
low-pass CNN denoiser with a global RF. Again, unlike the conditional wavelet stages, this ar-
chitectural choice does not enforce any local Markov structure nor stationarity. This global RF
allows capturing global non-stationary structures, such as the overall face shape. The synthesis
then proceeds using the same coarse-to-fine steps as used for super-resolution: wavelet coeffi-
cients at each successive scale are generated by drawing a sample using the cCNN conditioned

65



Chapter 4. Multiscale Local Conditional Models of Images

Figure 4.6: Image synthesis. Left four images: Coarse-to-fine synthesis, achieved by sampling the score
learned for each successive conditional distribution. Synthesized images are shown at four resolutions,
from coarse-scale only (leftmost, 40× 40) to the finest scale (rightmost, 320× 320). Conditional RFs are
all 13 × 13. Right image: Synthesis using a pixel-domain CNN with a receptive field (40 × 40) smaller
than the synthesized image 320× 320.

on the previous scale.
The first (smallest) image in Figure 4.6 is generated from the low-pass CNN (see Ap-

pendix C.4 for algorithm). We can see that it successfully captures the coarse structure of a face.
This image is then refined by application of successive stages of the multiscale super-resolution
synthesis algorithm described above. The next three images in Figure 4.6 show successively
higher resolution images generated in the procedure. For comparison, the last image in Fig-
ure 4.6 shows a sample generated using a conventional CNN with equivalent RFs trained on
large face images. Once again, this illustrates that assuming spatially localized Markov prop-
erty on the pixel lattice and estimating the score with a CNN with RF smaller than the image
fails to capture the non-stationary distribution of faces. Specifically, the model is unable to
generate structures larger than the RF size, and the samples are texture-like and composed of
local regions resembling face parts.

We note that the quality of the generated images is not on par with the most recent score-
based diffusion methods (e.g., Ramesh et al. (2022); Saharia et al. (2022); Rombach et al. (2022)),
which have also been used for iterative super-resolution of an initial coarse-scale sample. These
methods use much larger networks (more than a billion parameters, compared to ours which
uses 600k parameters for the low-pass CNN and 200k for the cCNNs), and each scale-wise
denoiser is itself a U-Net, with associated RF covering the entire image. Thus, the implicit
probability models in these networks are global, and it is an open question whether and how
these architectures are able to escape the curse of dimensionality. Our local conditional Markov
assumptions provide a step towards the goal of making explicit the probability model and its
factorization into low-dimensional components.

4.6 Discussion

In this chapter, we have generalized a Markov wavelet conditional probability model of image
distributions, and developed an explicit implementation using cCNNs to estimate the conditional
model scores. The resulting conditional wavelet distributions are stationary and Markov over
neighborhoods corresponding to the cCNN receptive fields. The coarse-scale low-pass band is
modeled using the score estimated with a CNN with global receptive fields. We trained this
model on a dataset of face images, which are non-stationary with large-scale geometric features.
We find that the model, even with relatively small cCNN RFs, succeeds in capturing these
features, producing high-quality results on denoising and super-resolution tasks. We contrast
this with local Markov models in the pixel domain, which are not able to capture these features,
and are instead limited to stationary ergodic textures.

The Markov wavelet conditional model demonstrates that probability distributions of images

66



Section 4.6. Discussion

can be factorized as products of conditional distributions that are local. This model provides
a mathematical justification which can partly explain the success of coarse-to-fine diffusion
synthesis (Ho et al., 2020) which also computes conditional scores at each scale. Although we
set out to understand how factorization of density models could allow them to avoid the curse
of dimensionality in training, it is worth noting that the dimensionality of the conditioning
neighborhoods in our network is still uncomfortably high (4× 9× 9 = 324). This is reduced by
a factor of roughly 300 relative to the image size (320×320 = 102, 400), and this dimensionality
remains constant even if this image size is increased, but it is still not sufficient to explain how
the conditional score can be trained with realistic amounts of data. In addition, the terminal
low-pass CNN operates globally (dimensionality 40× 40 = 1600). Thus, the question of how to
further reduce the overall dimensionality of the model remains open.

Our experiments were performed on cropped and centered face images, which present a par-
ticular challenge given their obvious non-stationarity. The conditional models are approximately
stationary due to the fully convolutional structure of the cCNN operations (although this is par-
tially violated by zero-padded boundary handling). As such, the non-stationary capabilities of
the full model arise primarily from the terminal low-pass CNN, which uses spatially global RFs.
We speculate that for more diverse image datasets (e.g., a large set of natural images), a much
larger capacity low-pass CNN will be needed to capture global structures. This is consistent
with current deep networks that generate high-quality synthetic images using extremely large
networks (Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022). On the other hand,
the cCNNs in our model all share the same architecture and local RFs, and may (empirically) be
capturing similar local conditional structure at each scale. Forcing these conditional densities to
be the same at each scale (through weight sharing of the corresponding cCNNs) would impose a
scale invariance assumption on the overall model. This would further reduce model complexity,
and enable synthesis and inference on images of size well beyond that of the training set.

In this chapter, together with Chapters 2 and 3, we have shown that a wavelet conditional
factorization may reveal properties of log-concavity, regularity, and locality that were not enjoyed
by the global distribution p(x). These results evidence some multiscale properties of image
distributions and how they can partially be leveraged to alleviate the curse of dimensionality.
The central issue remains to explain how score-based diffusion models manage to estimate the
scores of these distributions and seemingly generalize from small amounts of data. These issues
are the same as in supervised learning, though from a different point of view, and thus one might
expect that studying the score estimation problem might bring new insights into the classical
problem of generalization in supervised learning.

67





Part II

Non-Linear Operators for Image
Classification





Chapter

5
Separation and Concentration
in Deep Networks

Chapter content
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Classification by separation and concentration . . . . . . . . . . . . . 72

5.2.1 Tight frame rectification and thresholding . . . . . . . . . . . . . . . . . 72

5.2.2 Two-layer networks without bias . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Deep learning by scattering and concentrating . . . . . . . . . . . . . 77

5.3.1 Scattering cascade of wavelet frame separations . . . . . . . . . . . . . . 77

5.3.2 Separation and concentration in learned scattering networks . . . . . . . 79

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Numerical experiments demonstrate that deep neural network classifiers progressively sepa-
rate class distributions around their mean, achieving linear separability on the training set, and
increasing the Fisher discriminant ratio. We explain this mechanism with two types of non-linear
operators. We prove that a rectifier without biases applied to sign-invariant tight frames can
separate class means and increase Fisher ratios. On the opposite, a soft-thresholding on tight
frames can reduce within-class variabilities while preserving class means. Variance reduction
bounds are proved for Gaussian mixture models. We show that separation of class means can
be achieved with rectified wavelet tight frames that are not learned. It defines a scattering
transform. Learning 1 × 1 convolutional tight frames along scattering channels and applying
a soft-thresholding reduces within-class variabilities. The resulting scattering network reaches
the classification accuracy of ResNet-18 on CIFAR-10 and ImageNet, with fewer layers and no
learned biases.

This chapter is adapted from the following publication: John Zarka, Florentin Guth, and
Stéphane Mallat. Separation and concentration in deep networks. In International Conference
on Learning Representations, 2021. We omit the proof of Theorem 5.1, which was not done by
the author of this dissertation. This chapter was written before Chapter 6 and is therefore less
mature. In particular, the role of phase collapse in separating class means was not yet fully
identified. Separation and concentration operators are treated symmetrically in this chapter,
whereas the results in Chapter 6 show that separation with phase collapses alone is sufficient
to achieve high classification accuracies, which is not the case for concentration operators. The
learned scattering architectures introduced in this chapter are thus precursors for the more
streamlined one of Chapter 6. Finally, we note that the theoretical and numerical results pre-
sented in this chapter have been refined by Zarka (2022), who notably presents generalizations
of Theorem 5.1.



Chapter 5. Separation and Concentration in Deep Networks

5.1 Introduction

Several numerical works (Oyallon, 2017; Papyan, 2020; Papyan et al., 2020) have shown that deep
neural networks classifiers (LeCun et al., 2015) progressively concentrate each class around sepa-
rated means, until the last layer, where within-classes variability may nearly “collapse” (Papyan
et al., 2020). The linear separability of a class mixture is characterized by the Fisher discrimi-
nant ratio (Fisher, 1936; Rao, 1948). The Fisher discriminant ratio measures the separation of
class means relatively to the variability within each class, as measured by their covariances. The
neural collapse appears through a considerable increase of the Fisher discriminant ratio during
training (Papyan et al., 2020). No mathematical mechanism has yet been provided to explain
this separation and concentration of probability measures.

Linear separability and Fisher ratios can be increased by separating class means without
increasing the variability of each class, or by concentrating each class around its mean while
preserving the mean separation. This chapter shows that these separation or concentration prop-
erties can be achieved with one-layer network operators using different pointwise non-linearities.
We cascade these operators to define structured deep neural networks with high classification
accuracies, and which can be analyzed mathematically.

Section 5.2 studies two-layer networks computed with a linear classifier applied to ρDT, where
DT is linear and ρ is a pointwise non-linearity. First, we show that ρDT can separate class means
with a ReLU ρr(u) = max(u, 0) and a sign-invariant D. We prove that ρrDT then increases
the Fisher ratio. As in Parseval networks (Cisse et al., 2017), D is normalized by imposing that
it is a tight frame which satisfies DDT = Id. Second, to concentrate the variability of each
class around its mean, we use a shrinking non-linearity implemented by a soft-thresholding ρt.
For Gaussian mixture models, we prove that ρtDT concentrates within-class variabilities while
nearly preserving class means, under appropriate sparsity hypotheses. A linear classifier applied
to these ρDT defines two-layer neural networks with no learned bias parameters in the hidden
layer, whose properties are studied mathematically and numerically.

Cascading several convolutional tight frames with ReLUs or soft-thresholdings defines a deep
neural network which progressively separates class means and concentrates their variability. One
may wonder if we can avoid learning these frames by using prior information on the geometry
of images. Section 5.3 shows that the class mean separation can be computed with wavelet
tight frames, which are not learned. They separate scales, directions and phases, which are
known groups of transformations. A cascade of wavelet filters and rectifiers defines a scattering
transform (Mallat, 2012), which has previously been applied to image classification (Bruna and
Mallat, 2013; Oyallon and Mallat, 2015). However, such networks do not reach state-of-the-art
classification results. We show that important improvements are obtained by learning 1 × 1
convolutional projectors and tight frames, which concentrate within-class variabilities with soft-
thresholdings. It defines a bias-free deep scattering network whose classification accuracy reaches
ResNet-18 (He et al., 2016) on CIFAR-10 and ImageNet.

5.2 Classification by separation and concentration

The last hidden layer of a neural network defines a representation Φ(x), to which is applied a
linear classifier. This section studies the separation of class means and class variability concen-
tration for Φ = ρDT in a two-layer network.

5.2.1 Tight frame rectification and thresholding

We begin by briefly reviewing the properties of linear classifiers and Fisher discriminant ratios.
We then analyze the separation and concentration of Φ = ρDT, when ρ is a rectifier or a
soft-thresholding and D is a tight frame.

72



Section 5.2. Classification by separation and concentration

Linear classification and Fisher ratio. We consider a random data vector x ∈ Rd whose
class labels are y(x) ∈ {1, ..., C}. Let xc be a random vector representing the class c, whose
probability distribution is the distribution of x conditioned by y(x) = c. We suppose that all
classes are equiprobable for simplicity. Avec denotes C−1∑C

c=1.
We compute a representation of x with an operator Φ which is standardized, so that

E(Φ(x)) = 0 and each coefficient of Φ(x) has a unit variance. The class means µc = E[Φ(xc)]
thus satisfy ∑c µc = 0. A linear classifier (θ, b) on Φ(x) returns the index of the maximum
coordinate of θTΦ(x) + b ∈ RC . An optimal linear classifier (θ, b) minimizes the probability
of a classification error. Optimal linear classifiers are estimated by minimizing a regularized
loss function on the training data. Neural networks often use logistic linear classifiers, which
minimize a cross-entropy loss. The standardization of the last layer Φ(x) is implemented with
a batch normalization (Ioffe and Szegedy, 2015).

A linear classifier can have a small error if the typical sets of each Φ(xc) have little overlap,
and in particular if the class means µc = E[Φ(xc)] are sufficiently separated relatively to the
variability of each class. Under the Gaussian hypothesis, the variability of each class is measured
by the covariance Σc of Φ(xc). Let ΣW = Avec Σc be the average within-class covariance and
ΣB = Avec µc µT

c be the between-class covariance of the means. The within-class covariance can
be whitened and normalized to Id by transforming Φ(x) with the square root Σ−1/2

W of Σ−1
W . All

classes c, c′ are highly separated if ∥Σ−1/2
W µc − Σ−1/2

W µc′∥ ≫ 1. This separation is captured by
the Fisher discriminant ratio Σ−1

W ΣB. We shall measure its trace

C−1 tr(Σ−1
W ΣB) = Ave

c
∥Σ−1/2

W µc∥
2. (5.1)

Fisher ratios have been used to train deep neural networks as a replacement for the cross-
entropy loss (Dorfer et al., 2015; Stuhlsatz et al., 2012; Sun et al., 2019; Wu et al., 2017; Sultana
et al., 2018; Li et al., 2016). In this chapter, we use their analytic expression to analyze the
improvement of linear classifiers.

Linear classification obviously cannot be improved with a linear representation Φ. The fol-
lowing proposition gives a simple condition to improve (or maintain) the error of linear classifiers
with a non-linear representation.

Proposition 5.1. If Φ has a linear inverse, then it decreases (or maintains) the error of the
optimal linear classifier, and it increases (or maintains) the Fisher ratio (5.1).

To prove this result, observe that if Φ has a linear inverse Φ−1 then θTx = θ′TΦ(x) with
θ′T = θTΦ−1. The minimum classification error by optimizing θ is thus above the error obtained
by optimizing θ′. Appendix D.1 proves that the Fisher ratio (5.1) is also increased or preserved.

There are qualitatively two types of non-linear operators that increase the Fisher ratio
Σ−1
W ΣB. Separation operators typically increase the distance between the class means with-

out increasing the variance ΣW within each class. We first study such operators having a linear
inverse, which guarantees through Proposition 5.1 that they increase the Fisher ratio. We then
study concentration operators which reduce the variability ΣW with non-linear shrinking oper-
ators, which are not invertible. It will thus require a finer analysis of their properties.

Separation by tight frame rectification. Let Φ = ρDT be an operator which computes
the first layer of a neural network, where ρ is a pointwise non-linearity and D is linear. We first
study separation operators computed with a ReLU ρr(u) = max(u, 0) applied to an invertible
sign-invariant matrix D. Such a matrix has columns that can be regrouped in pairs of opposite
signs. It can thus be written D = [−D̃, D̃] where D̃ is invertible. The operator ρDT separates
coefficients according to their sign. Since ρr(u)−ρr(−u) = u, it results that Φ = ρrD

T is linearly
invertible. According to Proposition 5.1, it increases (or maintains) the Fisher ratio, and we
want to choose D to maximize this increase.

73



Chapter 5. Separation and Concentration in Deep Networks

Observe that ρr(αu) = αρr(u) if α ≥ 0. We can thus normalize the columns dm of D without
affecting linear classification performance. To ensure that D ∈ Rd×p is invertible with a stable
inverse, we impose that it is a normalized tight frame of Rd satisfying

DDT = Id and ∥dm∥2 = d/p for 1 ≤ m ≤ p.

The tight frame can be interpreted as a rotation operator in a higher dimensional space, which
aligns the axes and the directions along which ρr performs the sign separation. This rotation
must be adapted in order to optimize the separation of class means. The fact that D is a tight
frame can be interpreted as a normalization which simplifies the mathematical analysis.

Suppose that all classes xc of x have a Gaussian distribution with a zero mean µc = 0,
but different covariances Σc. These classes are not linearly separable because they have the
same mean, and the Fisher ratio is 0. Applying ρrDT can separate these classes and improve
the Fisher ratio. Indeed, if z is a zero-mean Gaussian random variable, then E[max(z, 0)] =
(2π)−1/2E[z2]1/2 so we verify that for D = [−D̃, D̃],

E
[
ρrD

Txc
]

= (2π)−1/2
(
diag(D̃TΣcD̃)1/2,diag(D̃TΣcD̃)1/2

)
.

The Fisher ratio can then be optimized by maximizing the covariance ΣB between the mean
vector components diag(D̃TΣcD)1/2 for all classes c. If we know a priori that that xc and −xc
have the same probability distribution, as in the Gaussian example, then we can replace ρr by
the absolute value ρa(u) = |u| = ρr(u) + ρr(−u), and ρrD

T by ρaD̃
T, which reduces by 2 the

frame size.

Concentration by tight frame soft-thresholding. If the class means of x are already
separated, then we can increase the Fisher ratio with a non-linear Φ that concentrates each
class around its mean. The operator Φ must reduce the within-class variance while preserving
the class separation. This can be interpreted as a non-linear noise removal if we consider the
within-class variability as an additive noise relatively to the class mean. It can be done with
soft-thresholding estimators introduced in Donoho and Johnstone (1994). A soft-thresholding
ρt(u) = sign(u) max(|u| − λ, 0) shrinks the amplitude of u by λ in order to reduce its variance,
while introducing a bias that depends on λ. Donoho and Johnstone (1994) proved that soft-
thresholding estimators are highly effective to estimate signals that have a sparse representation
in a tight frame D, which then plays the role of a dictionary.

To evaluate more easily the effect of a tight frame soft-thresholding on the class means,
we apply the linear reconstruction D on ρtD

Tx, which thus defines a representation Φ(x) =
DρtD

Tx. For a strictly positive threshold, this operator is not invertible, so we cannot apply
Proposition 5.1 to prove that the Fisher ratio increases. We study directly the impact of Φ on
the mean and covariance of each class. Let xc be the vector representing the class c. The mean
µc = E[xc] is transformed into µ̄c = E[Φ(xc)] and the covariance Σc of xc into the covariance Σc

of Φ(xc). The average covariances are ΣW = Avec Σc and ΣW = Avec Σc.
Suppose that each xc is a Gaussian mixture, with a potentially large number of Gaussian

components centered at µc,k with a fixed covariance σ2 Id:

pc =
∑
k

πc,kN (µc,k, σ2 Id). (5.2)

This model is quite general, since it amounts to covering the typical set of realizations of xc with
a union of balls of radius σ, centered in the (µc,k)k. The following theorem relates the reduction
of within-class covariance to the sparsity of DTµc,k. It relies on the soft-thresholding estimation
results of Donoho and Johnstone (1994).

74



Section 5.2. Classification by separation and concentration

For simplicity, we suppose that the tight frame is an orthogonal basis, but the result can
be extended to general normalized tight frames. The sparsity is expressed through the de-
cay of sorted basis coefficients. For a vector z ∈ Rd, we denote z(r) a coefficient of rank r:
|z(r)| ≥ |z(r+1)| for 1 ≤ r ≤ d. The theorem imposes a condition on the amplitude decay
of the (DTµc,k)(r) when r increases, which is a sparsity measure. We write a(r) ∼ b(r) if
C1 a(r) ≤ b(r) ≤ C2 a(r) where C1 and C2 do not depend upon d nor σ. The theorem derives
upper bounds on the reduction of within-class covariances and on the displacements of class
means. The constants do not depend upon d when it increases to ∞ nor on σ when it decreases
to 0.

Theorem 5.1. Under the mixture model hypothesis (5.2), we have

tr(ΣW ) = tr(ΣM ) + σ2 d, with tr(ΣM ) = C−1∑
c,k

πc,k ∥µc − µc,k∥
2. (5.3)

If there exists s > 1/2 such that |(DTµc,k)(r)| ∼ r−s then a tight frame soft-thresholding with
threshold λ = σ

√
2 log d satisfies

tr(ΣW ) = 2 tr(ΣM ) +O(σ2−1/s log d), (5.4)

and all class means satisfy
∥µc − µc∥

2 = O(σ2−1/s log d). (5.5)

The proof is in the original publication (Zarka et al., 2021, Appendix B). Under appropriate
sparsity hypotheses, the theorem proves that applying Φ = DρtD

T reduces considerably the
trace of the within-class covariance. The Gaussian variance σ2d is dominant in (5.3) and is
reduced to O(σ2−1/s log d) in (5.4). The upper bound (5.5) also proves that DρtDT creates a
relatively small displacement of class means, which is proportional to log d. This ensures that all
class means remain well separated. These bounds qualitatively explains the increase of Fisher
ratios, but they are not sufficient to prove a precise bound on these ratios.

In numerical experiments, the threshold value of the theorem is automatically adjusted as
follows. Non-asymptotic optimal threshold values have been tabulated as a function of d by
Donoho and Johnstone (1994). For the range of d used in our applications, a nearly optimal
threshold is λ = 1.5σ. We rescale the frame variance σ2 by standardizing the input x so that
it has a zero mean and each coefficient has a unit variance. In high dimension d, the within-
class variance typically dominates the variance between class means. Under the unit variance
assumption we have tr(ΣW ) ≈ d. If D ∈ Rd×p is a normalized tight frame then we also verify
as in (5.3) that tr(ΣW ) ≈ σ2p so σ2 ≈ d/p. It results that we choose λ = 1.5

√
d/p.

A soft-thresholding can also be computed from a ReLU with threshold ρrt(u) = max(u−λ, 0)
because ρt(u) = ρrt(u) − ρrt(−u). It results that [D,−D] ρrt [D,−D]T = DρtD

T. However,
a thresholded rectifier has more flexibility than a soft-thresholding, because it may recombine
differently ρrtDT and ρrt(−DT) to also separate class means, as explained previously. The choice
of threshold then becomes a trade-off between separation of class means and concentration of
class variability. In numerical experiments, we choose a lower λ =

√
d/p for a ReLU with a

threshold.

5.2.2 Two-layer networks without bias

We study two-layer bias-free networks that implement a linear classification on ρDT, where D is
a normalized tight frame and ρ may be a rectifier, an absolute value or a soft-thresholding, with
no learned bias parameter. Bias-free networks have been introduced for denoising in Mohan et al.
(2019), as opposed to classification or regression. We show that such bias-free networks have a
limited expressivity and do not satisfy universal approximation theorems (Pinkus, 1999; Bach,

75



Chapter 5. Separation and Concentration in Deep Networks

2017a). However, numerical results indicate that their separation and contractions capabilities
are sufficient to reach similar classification results as two-layer networks with biases on standard
image datasets.

Applying a linear classifier on Φ(x) computes

θTΦ(x) + b = θTρDTx+ b.

This two-layer neural network has no learned bias parameters in the hidden layer, and we impose
that DDT = Id with atoms (the columns of D) (dm)m having constant norms. As a result, the
following theorem proves that it does not satisfy the universal approximation theorem. We
define a binary classification problem for which the probability of error remains above 1/4 for
any number p of neurons in the hidden layer. The proof is provided in Appendix D.2 for a
ReLU ρrt with any threshold. The theorem remains valid with an absolute value ρa or a soft-
thresholding ρt, because they are linear combinations of ρrt.

Theorem 5.2. Let λ ≥ 0 be a fixed threshold and ρrt(u) = max(u − λ, 0). Let D be the set
of matrices D ∈ Rd×p with bounded columns ∥dm∥ ≤ 1. There exists a random vector x ∈ Rd

which admits a probability density supported on the unit ball, and a C∞ function h : Rd → R
such that, for all p ≥ d,

inf
θ∈Rp

,D∈D,b∈R
P
[
sgn

(
θTρrtD

Tx+ b
)
̸= sgn(h(x))

]
≥ 1

4 .

Optimization. The parameters θ, D and b are optimized with a stochastic gradient descent
that minimizes a logistic cross-entropy loss on the output. To impose DDT = Id, following the
optimization of Parseval networks (Cisse et al., 2017), after each gradient update of all network
parameters, we insert a second gradient step to minimize α/2 ∥DDT − Id ∥2. This gradient
update is

D ← (1 + α)D − αDDTD. (5.6)

We also make sure after every Parseval step that each atom dm keeps a constant norm ∥dm∥ =√
d/p by applying a spherical projection: dm ←

√
d/p dm/∥dm∥. These steps are performed

across all experiments described in the chapter, which ensures that all singular values of every
learned tight frame are comprised between 0.99 and 1.01.

To reduce the number of parameters of the classification matrix θT ∈ RC×p, we factorize
θT = θ′TD with θ′T ∈ RC×d. It amounts to reprojecting ρDT in Rd with the semi-orthogonal
frame synthesis D, and thus defines

Φ(x) = DρDTx.

A batch normalization is introduced after Φ to stabilize the learning of θ′.

Image classification by separation and concentration. Image classification is first evalu-
ated on the MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky, 2009) image datasets. Ta-
ble 5.1 gives the results of logistic classifiers applied to the input signal x and to Φ(x) = DρDTx
for 3 different non-linearities ρ: absolute value ρa, soft-thresholding ρt, and ReLU with threshold
ρrt. The tight frame DT is a convolution on patches of size k × k with a stride of k/2, with
k = 14 for MNIST and k = 8 for CIFAR. The tight frame DT maps each patch to a vector of
larger dimension, specified in Appendix D.3.

On each dataset, applying DρDT on x greatly reduces linear classification error, which also
appears with an increase of the Fisher ratio. For MNIST, all non-linearities produce nearly the
same classification accuracy, but on CIFAR, the soft-thresholding has a higher error. Indeed, the

76



Section 5.3. Deep learning by scattering and concentrating

Φ(x) x
DρDTx

ST (x)
ρ = ρa ρ = ρt ρ = ρrt

MNIST Error (%) 7.4 1.3 1.4 1.3 0.8
Fisher 19 68 69 67 130

CIFAR Error (%) 60.5 28.1 34.8 26.5 27.7
Fisher 6.7 15 13 16 12

Table 5.1: For MNIST and CIFAR-10, the first row gives the logistic classification error and the second
row the Fisher ratio (5.1), for different signal representations Φ(x). Results are evaluated with an absolute
value ρa, a soft-thresholding ρt, and a ReLU with threshold ρrt.

class means of MNIST are distinct averaged digits, which are well separated, because all digits
are centered in the image. Concentrating variability with a soft-thresholding is then sufficient.
On the opposite, the classes of CIFAR images define nearly stationary random vectors because of
arbitrary translations. As a consequence, the class means µc are nearly constant images, which
are only discriminated by their average color. Separating these class means is then important
for improving classification. As explained in Section 5.2.1, this is done by a ReLU ρr, or in this
case an absolute value ρa, which reduces the error. The ReLU with threshold ρrt can interpolate
between mean separation and variability concentration, and thus performs usually at least as
well as the other non-linearities.

The error of the bias-free networks with a ReLU and an absolute value are similar to the
errors obtained by training two-layer networks of similar sizes but with bias parameters: 1.6%
error on MNIST (Simard et al., 2003), and 25% on CIFAR-10 (Krizhevsky, 2010). It indicates
that the elimination of bias parameters does not affect performances, despite the existence of the
counter-examples from Theorem 5.2 that cannot be well approximated by such architectures.
This means that image classification problems have more structure that are not captured by these
counter-examples, and that completeness in linear high-dimensional functional spaces may not
be key mathematical properties to explain the preformances of neural networks. Figure 5.1
shows that the learned convolutional tight frames include oriented oscillatory filters, which is
also often the case of the first layer of deeper networks (Krizhevsky et al., 2012). They resemble
wavelet frames, which are studied in the next section.

5.3 Deep learning by scattering and concentrating

To improve classification accuracy, we cascade mean separation and variability concentration
operators, implemented by ReLUs and soft-thresholdings on tight frames. This defines deep
convolutional networks. However, we show that some tight frames do not need to be learned.
Section 5.3.1 reviews scattering trees, which perform mean separation by cascading ReLUs on
wavelet tight frames. Section 5.3.2 shows that we reach high classification accuracies by learning
projectors and tight frame soft-thresholdings, which concentrate within-class variabilities along
scattering channels.

5.3.1 Scattering cascade of wavelet frame separations

Scattering transforms have been introduced to classify images by cascading predefined wavelet
filters with a modulus or a rectifier non-linearity (Bruna and Mallat, 2013). We write it as a
product of wavelet tight frame rectifications, which progressively separate class means.

77



Chapter 5. Separation and Concentration in Deep Networks

Figure 5.1: Examples of filters dm from the convolutional tight frame D learned directly on the input x
for CIFAR-10, using an absolute value non-linearity ρa. They resemble wavelet filters.

Wavelet frame. A wavelet frame separates image variations at different scales, directions and
phases, with a cascade of filterings and subsamplings. We use steerable wavelets (Simoncelli and
Freeman, 1995) computed with Morlet filters (Bruna and Mallat, 2013). There is one low-pass
filter g0, and L complex band-pass filters gℓ having an angular direction ℓπ/L for 0 < ℓ ≤ L.
These filters can be adjusted (Selesnick et al., 2005) so that the filtering and subsampling

W̃x(n, ℓ) = x ⋆ gℓ(2n)

defines a complex tight frame W̃ . Fast multiscale wavelet transforms are computed by cascading
the filter bank W̃ on the output of the low-pass filter g0 (Mallat, 2008).

Each complex filter gℓ is analytic, and thus has a real part and imaginary part whose phases
are shifted by α = π/2. This property is important to preserve equivariance to translation
despite the subsampling with a stride of 2 (Selesnick et al., 2005). To define a sign-invariant
frame as in Section 5.2.1, we must incorporate filters of opposite signs, which amounts to shifting
their phase by π. We thus associate to W̃ a real sign-invariant tight frame W by considering
separately the four phases α = 0, π/2, π, 3π/2. It is defined by

Wx(n, ℓ, α) = x ⋆ gℓ,α(2n),

with gℓ,0 = 2−1/2Real(gℓ), gℓ,π/2 = 2−1/2Imag(gℓ) and gℓ,α+π = −gℓ. We apply a rectifier ρr to
the output of all real band-pass filters gℓ,α but not to the low-pass filter:

ρrW =
(
x ⋆ g0(2n) , ρr(x ⋆ gℓ,α(2n))

)
n,α,ℓ

.

The use of wavelet phase parameters with rectifiers is studied in Mallat et al. (2019). The
operator ρrW is linearly invertible because W is a tight frame and the ReLU is applied to band-
pass filters, which come in pairs of opposite sign. Since there are 4 phases and a subsampling
with a stride of 2, Wx is (L+ 1/4) times larger than x.

Scattering tree. A full scattering tree ST of depth J is computed by iterating J times over
ρrW . Since each ρrW has a linear inverse, Proposition 5.1 proves that this separation can
only increase the Fisher ratio. However it also increases the signal size by (L+ 1/4)J , which is

78



Section 5.3. Deep learning by scattering and concentrating

Φ ST SP SC (ρt) SC (ρrt) ResNet

CIFAR Error (%) 27.7 12.8 8.0 7.6 8.8
Fisher 12 20 43 41 -

ImageNet Error (%) Top-5 54.1 20.5 11.6 10.7 10.9
Top-1 73.0 42.3 31.4 29.7 30.2

Fisher 2.0 18 51 44 -

Table 5.2: Linear classification error and Fisher ratios (5.1) of several scattering representations, on
CIFAR-10 and ImageNet. For SC , results are evaluated with a soft-thresholding ρt and a thresholded
rectifier ρrt. The last column gives the error of ResNet-20 for CIFAR-10 (He et al., 2016) and ResNet-18
for ImageNet, taken from https: // pytorch. org/ docs/ stable/ torchvision/ models. html .

typically much too large. This is avoided with orthogonal projectors, which perform a dimension
reduction after applying each ρrW .

A pruned scattering tree ST of depth J and order o is defined in Bruna and Mallat (2013)
as a convolutional tree which cascades J rectified wavelet filter banks, and at each depth prunes
the branches with Pj to prevent an exponential growth:

ST =
J∏
j=1

Pj ρrW. (5.7)

After the ReLU, the pruning operator Pj eliminates the branches of the scattering which cascade
more than o band-pass filters and rectifiers, where o is the scattering order (Bruna and Mallat,
2013). After J cascades, the remaining channels have thus been filtered by at least J − o
successive low-pass filters g0. We shall use a scattering transform of order o = 2. The operator
Pj also averages the rectified output of the filters gℓ,α along the phase α, for ℓ fixed. This
averaging eliminates the phase. It approximatively computes a complex modulus and produces
a localized translation invariance. The resulting pruning and phase average operator Pj is a 1×1
convolutional operator, which reduces the dimension of scattering channels with an orthogonal
projection. If x has d pixels, then ST (x)[n, k] is an array of images having 2−2Jd pixels at each
channel k, because of the J subsamplings with a stride of 2. The total number of channels
K is 1 + JL + J(J − 1)L2/2. Numerical experiments are performed with wavelet filters which
approximate Gabor wavelets (Bruna and Mallat, 2013), with L = 8 directions. The number
of scales J depends upon the image size. It is J = 3 for MNIST and CIFAR, and J = 4 for
ImageNet, resulting in respectively K = 217, 651 and 1251 channels.

Each ρrW can only improve the Fisher ratio and the linear classification accuracy, but it is
not guaranteed that this remains valid after applying Pj . Table 5.1 gives the classification error
of a logistic classifier applied on ST (x), after a 1×1 orthogonal projection to reduce the number
of channels, and a spatial normalization. This error is almost twice smaller than a two-layer
neural network on MNIST, given in Table 5.1, but it does not improve the error on CIFAR. On
CIFAR, the error obtained by a ResNet-20 is 3 times lower than the one of a classifier on ST (x).
The main issue is now to understand where this inefficiency comes from.

5.3.2 Separation and concentration in learned scattering networks

A scattering tree iteratively separates class means with wavelet filters. Its dimension is reduced
by predefined projection operators, which may decrease the Fisher ratio and linear separabil-
ity. To avoid this source of inefficiency, we define a scattering network which learns these
projections. The second step introduces tight frame thresholdings along scattering channels, to
concentrate within-class variabilities. Image classification results are evaluated on the CIFAR-10
(Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015) datasets.

79

https://pytorch.org/docs/stable/torchvision/models.html


Chapter 5. Separation and Concentration in Deep Networks

CIFAR Layer 0 1 2 3 4 5 6 7 8
Fisher 1.8 11 13 11 15 15 22 25 40

Table 5.3: Evolution of Fisher ratio across layers for the scattering concentration network SC with a
ReLU with threshold ρrt, on the CIFAR dataset.

Learned scattering projections. Beyond scattering trees, the projections Pj of a scattering
transform (5.7) can be redefined as arbitrary orthogonal 1 × 1 convolutional operators, which
reduce the number of scattering channels: PjPT

j = Id. Orthogonal projectors acting along the
direction index ℓ of wavelet filters can improve classification (Oyallon and Mallat, 2015). We
are now going to learn these linear operators together with the final linear classifier. Before
computing this projection, the mean and variances of each scattering channel is standardized
with a batch normalization BN , by setting affine coefficients γ = 1 and β = 0. This projected
scattering operator can be written

SP =
J∏
j=1

Pj BN ρrW.

Applying a linear classifier to SP (x) defines a deep convolutional network whose parameters are
the 1× 1 convolutional Pj and the classifier weights θ, b. The wavelet convolution filters in W
are not learned. The orthogonality of Pj is imposed through the gradient steps (5.6) applied
to D = Pj . Table 5.2 shows that learning the projectors Pj more than halves the scattering
classification error of SP relatively to ST on CIFAR-10 and ImageNet, reaching AlexNet accuracy
on ImageNet, while achieving a higher Fisher ratio.

The learned orthogonal projections Pj create invariants to families of linear transformations
along scattering channels that depend upon scales, directions and phases. They correspond to
image transformations which have been linearized by the scattering transform. Small diffeomor-
phisms which deform the image are examples of operators which are linearized by a scattering
transform (Mallat, 2012). The learned projector eliminates within-class variabilities which are
not discriminative across classes. Since it is linear, it does not improve linear separability or the
Fisher ratio. It takes advantage of the non-linear separation produced by the previous scattering
layers.

The operator Pj is a projection on a family of orthogonal directions which define new scat-
tering channels, and is followed by a wavelet convolution W along spatial variables. It defines
separable convolutional filters WPj along space and channels. Learning Pj amounts to choosing
orthogonal directions so that ρrWPj optimizes the class means separation. If the class distribu-
tions are invariant by rotations, the separation can be achieved with wavelet convolutions along
the direction index ℓ (Oyallon and Mallat, 2015), but better results are obtained by learning
these filters. This separable scattering architecture is different from separable approximations
of deep network filters in discrete cosine bases (Ulicny et al., 2019) or in Fourier-Bessel bases
(Qiu et al., 2018). A wavelet scattering computes ρrWPj as opposed to a separable decomposi-
tion ρrPjW , so the ReLU is applied in a higher dimensional space indexed by wavelet variables
produced by W . It provides explicit coordinates to analyze the mathematical properties, but it
also increase the number of learned parameters as shown in Table D.1, Appendix D.3.

Concentration along scattering channels. A projected scattering transform can separate
class means, but does not concentrate class variabilities. To further reduce classification er-
rors, following Section 5.2.1, a concentration is computed with a tight frame soft-thresholding
DjρtD

T
j , applied on scattering channels. It increases the dimension of scattering channels with

a 1 × 1 convolutional tight frame DT
j , applies a soft-thresholding ρt, and reduces the number

80



Section 5.4. Discussion

of channels with the 1 × 1 convolutional operator Dj . The resulting concentrated scattering
operator is

SC =
J∏
j=1

(Dj ρtD
T
j ) (Pj BN ρrW ). (5.8)

It has 2J layers, with odd layers computed by separating means with a ReLu ρr and even layers
computed by concentrating class variabilities with a soft-thresholding ρt. According to Section
5.2.1 the soft-threshold is λ = 1.5

√
d/p. This soft-thresholding may be replaced by a thresholded

rectifier ρrt(u) = max(u− λ, 0) with a lower threshold λ =
√
d/p. A logistic classifier is applied

to SC(x). The resulting deep network does not include any learned bias parameter, except in
the final linear classification layer. Learning is reduced to the 1× 1 convolutional operators Pj
and Dj along scattering channels, and the linear classification parameters.

Table 5.2 gives the classification errors of this concentrated scattering on CIFAR for J = 4 (8
layers) and ImageNet for J = 6 (12 layers). The layer dimensions are specified in Appendix D.3.
The number of parameters of the scattering networks are given in Table D.1, Appendix D.3.
This concentration step reduces the error of SC by about 40% relatively to a projected scattering
SP . A ReLU thresholding ρrt produces an error slightly below a soft-thresholding ρt both on
CIFAR-10 and ImageNet, and this error is also below the errors of ResNet-20 for CIFAR and
ResNet-18 for ImageNet. These errors are also nearly half the classification errors previously
obtained by cascading a scattering tree ST with several 1 × 1 convolutional layers and large
MLP classifiers (Zarka et al., 2020; Oyallon et al., 2017). It shows that the separation and
concentration learning must be done at each scale rather than at the largest scale output. Table
5.3 shows the progressive improvement of the Fisher ratio measured at each layer of SC on
CIFAR-10. The transition from an odd layer 2j − 1 to an even layer 2j results from DjρtD

T
j ,

which always improve the Fisher ratio by concentrating class variabilities. The transition from
2j to 2j+ 1 is done by Pj+1ρrW , which may decrease the Fisher ratio because of the projection
Pj+1, but globally brings an important improvement.

5.4 Discussion
We proved that separation and concentration of probability measures can be achieved with recti-
fiers and thresholdings applied to appropriate tight frames. We also showed that the separation
of class means can be achieved by cascading wavelet frames that are not learned. It defines a
scattering transform. By concentrating variabilities with a thresholding along scattering chan-
nels, we reach ResNet-18 classification accuracy on CIFAR-10 and ImageNet.

These results are refined in Chapter 6, which shows that separation operators are both
necessary and sufficient to reach ResNet-18 accuracy. These separation operators can further
be restricted to phase collapses of wavelet coefficients. Their separation properties do not come
from linear invertibility, which is a weak condition, but from collapsing multiplicative within-class
variability coming from small deformations.

A major mathematical issue is to understand the mathematical properties of the learned
projectors and tight frames along scattering channels. This is necessary to understand the types
of classification problems that are well approximated with such architectures. We present results
towards this goal in Chapter 7.

81





Chapter

6
Phase Collapse in Deep
Networks

Chapter content
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Eliminating spatial variability with phase collapses . . . . . . . . . . 85
6.3 Learned scattering network with phase collapses . . . . . . . . . . . 86
6.4 Phase collapses versus amplitude reductions . . . . . . . . . . . . . . 88
6.5 Iterating phase collapses and amplitude reductions . . . . . . . . . . 91

6.5.1 Iterated phase collapses . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.2 Iterated amplitude reductions . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

We have introduced in Chapter 5 two different types of operators to linearly separate image
classes and concentrate their variability. In this chapter, we propose more constrained separation
operators which collapse the phases of wavelet coefficients. These operators also concentrate
intra-class variability arising from small deformations. It raises the question whether increases
in classification accuracy of deep networks which iterate ReLUs with biases results from phase
collapses or thresholding operators that improve discrimination through sparsity.

This chapter demonstrates that collapsing the phases of complex wavelet coefficients is suf-
ficient to reach the classification accuracy of ResNets of similar depths. However, replacing the
phase collapses with thresholding operators that enforce sparsity considerably degrades the per-
formance. We explain these numerical results by showing that the iteration of phase collapses
progressively improves separation of classes, as opposed to thresholding non-linearities.

This chapter is adapted from the following publication: Florentin Guth, John Zarka, and
Stéphane Mallat. Phase collapse in neural networks. In International Conference on Learning
Representations, 2022. We note that the theoretical and numerical results presented in this
chapter have been refined by Zarka (2022), who notably presents generalizations of Theorem 6.1
to deformations rather than translations, building on Mallat (2012).

6.1 Introduction
CNN image classifiers progressively eliminate spatial variables through iterated filterings and
subsamplings, while linear classification accuracy improves as depth increases (Oyallon, 2017).
It has also been numerically observed that CNNs concentrate training samples of each class in
small separated regions of a progressively lower-dimensional space. It can ultimately produce a
neural collapse (Papyan et al., 2020), where all training samples of each class are mapped to a
single point. In this case, the elimination of spatial variables comes with a collapse of within-
class variability and perfect linear separability. This increase in linear classification accuracy is
obtained in standard CNN architectures like ResNets from the iteration of linear convolutional
operators and ReLUs with biases.



Chapter 6. Phase Collapse in Deep Networks

A difficulty in understanding the underlying mathematics comes from the flexibility of Re-
LUs. Indeed, a linear combination of biased ReLUs can approximate any non-linearity. Many
papers interpret iterations on ReLUs and linear operators as sparse code computations (Sun
et al., 2018; Sulam et al., 2018, 2019; Mahdizadehaghdam et al., 2019; Zarka et al., 2020). We
show that it is a different mechanism, called phase collapse, which underlies the increase in
classification accuracy of these architectures. A phase collapse is the elimination of phases of
complex-valued wavelet coefficients with a modulus, which we show to concentrate spatial vari-
ability. This is demonstrated by introducing a structured convolutional neural network with
wavelet filters and no biases.

Section 6.2 introduces and explains phase collapses. Complex-valued representations are used
because they reveal the mathematics of spatial variability. Indeed, translations are diagonalized
in the Fourier basis, where they become a complex phase shift. Invariants to translations are
computed with a modulus, which collapses the phases of this complex representation. Section 6.2
explains how this can improve linear classification. Phase collapses can also be calculated with
ReLUs and real filters. A CNN with complex-valued filters is indeed just a particular instance
of a real-valued CNN, whose channels are paired together to define complex numbers.

Section 6.3 demonstrates the role of phase collapse in deep classification architectures. It
introduces a Learned Scattering network with phase collapses. This network applies a learned
1× 1 convolutional complex operator Pj on each layer xj , followed by a phase collapse, which is
obtained with a complex wavelet filtering operator W and a modulus

xj+1 = |WPjxj |. (6.1)

It does not use any bias. This network architecture is illustrated in Figure 6.1. With the
addition of skip-connections, we show that this phase collapse network reaches ResNet accuracy
on ImageNet and CIFAR-10.

Section 6.4 compares phase collapses with other non-linearities such as thresholdings or more
general amplitude reduction operators. Such non-linearities can enforce sparsity but do not
modify the phase. We show that the accuracy of a Learned Scattering network is considerably
reduced when the phase collapse modulus is replaced by soft-thresholdings with learned biases.
This is also true of more general phase-preserving non-linearities and architectures.

Section 6.5 explains the performance of iterated phase collapses by showing that each phase
collapse progressively improves linear discriminability. On the opposite, the improvements in
classification accuracy of successive sparse code computations are shown to quickly saturate.

The main contribution of this chapter is a demonstration that the classification accuracy of
deep neural networks mostly relies on phase collapses, which are sufficient to linearly separate
the different classes on natural image databases. This is captured by the Learned Scattering
architecture which reaches ResNet-18 accuracy on ImageNet and CIFAR-10. We also show that
phase collapses are necessary to reach this accuracy, by demonstrating numerically and theoret-
ically that iterating phase-preserving non-linearities leads to a significantly worse performance.

Figure 6.1: Architecture of a Learned Scattering network with phase collapses. It has J + 1 layers
with J = 11 for ImageNet and J = 8 for CIFAR-10. Each layer is computed with a 1 × 1 convolutional
operator Pj which linearly combines channels. It is followed by a phase collapse, computed with a spatial
convolutional filtering with a complex wavelet W and a complex modulus |·|. A layer of depth j corresponds
to a scale 2j/2 and a subsampling by 2 is applied every two layers, after W . A skip-connection concatenates
the outputs of WPj and

∣∣WPj

∣∣. A final 1× 1 PJ reduces the dimension before a linear classifier.

84



Section 6.2. Eliminating spatial variability with phase collapses

6.2 Eliminating spatial variability with phase collapses
Deep convolutional classifiers achieve linear separation of image classes. We show that linear
classification on raw images has a poor accuracy because image classes are invariant to local
translations. This geometric within-class variability takes the form of random phase fluctua-
tions, and as a result all classes have a zero mean. To improve classification accuracy, non-linear
operators must separate class means, which therefore requires to collapse these phase fluctua-
tions.

Translations and phase shifts. Translations capture the spatial topology of the grid on
which the image is defined. These translations are transformed into phase shifts by a Fourier
transform. We prove that this remains approximately valid for images convolved with appropri-
ate complex filters.

Let x be an image indexed by u ∈ Z2. We write xτ (u) = x(u− τ) the translation of x by τ .
It is diagonalized by the Fourier transform x̂(ω) = ∑

u x(u) e−iω·u, which creates a phase shift

x̂τ (ω) = e−iω·τ x̂(ω). (6.2)

This diagonalization explains the need to introduce complex numbers to analyze the mathemati-
cal properties of geometric within-class variabilities. Computations can however be carried with
real numbers, as we will show.

A Fourier transform is computed by filtering x with complex exponentials eiω·u. One may
replace these by complex wavelet filters ψ that are localized in space and in the Fourier domain.
The following theorem proves that small translations can still be approximated by a phase shift
in this case. We denote by ∗ the convolution of images.

Theorem 6.1. Let ψ : Z2 → C be a filter with ∥ψ∥2 = 1, whose center frequency ξ and bandwidth
σ are defined by

ξ = 1
(2π)2

∫
[−π,π]2

ω |ψ̂(ω)|2 dω and σ2 = 1
(2π)2

∫
[−π,π]2

|ω − ξ|2|ψ̂(ω)|2 dω.

Then, for any τ ∈ Z2,
∥xτ ∗ ψ − e

−iξ·τ (x ∗ ψ)∥∞ ≤ σ |τ | ∥x∥2. (6.3)

The proof is in Appendix E.1. This theorem proves that if |τ | ≪ 1/σ then xτ ∗ψ ≈ e−iξ·τx∗ψ.
In this case, a translation by τ produces a phase shift by ξ · τ .

Phase collapse and stationarity. We define a phase collapse as the elimination of the phase
created by a spatial filtering with a complex wavelet ψ. We now show that phase collapses
improve linear classification of classes that are invariant to global or local translations.

The training images corresponding to the class label y may be represented as the realizations
of a random vector xy. To achieve linear separation, it is sufficient that class means E

[
xy
]

are
separated and within-class variances around these means are small enough (Hastie et al., 2009).
The goal of classification is to find a representation of the input images in which these properties
hold.

To simplify the analysis, we consider the particular case where each class y is invariant
to translations. More precisely, each random vector xy is stationary, which means that its
probability distribution is invariant to translations. Equation (6.2) then implies that the phases
of Fourier coefficients of xy are uniformly distributed in [0, 2π], leading to E[x̂y(ω)] = 0 for ω ̸= 0.
The class means E[xy] are thus constant images whose pixel values are all equal to E[x̂y(0)]. A
linear classifier can then only rely on the average colors of the classes, which are often equal in
practice. It thus cannot discriminate such translation-invariant classes.

85



Chapter 6. Phase Collapse in Deep Networks

Eliminating uniform phase fluctuations of non-zero frequencies is thus necessary to create
separated class means, which can be achieved with the modulus of the Fourier transform. It
is a translation-invariant representation: |x̂τ | = |x̂|. This improves linear discriminability of
stationary classes, because E[|x̂y|] may be different for different y. However, |x̂y| has a high
variance, because the Fourier transform is unstable to small deformations (Bruna and Mallat,
2013).

Fourier modulus descriptors can be improved by using filters ψ that have a localized support
in space. Theorem 6.1 shows that the phase of xy ∗ ψ is also uniformly distributed in [0, 2π]. It
results that E[xy∗ψ] = 0, and x∗ψ still provides no information for linear classification. Applying
a modulus similarly computes approximate invariants to small translations: |xτ ∗ ψ| ≈ |x ∗ ψ|,
with an error bounded by σ |τ | ∥x∥2. More generally, these phase collapses compute approximate
invariants to deformations which are well approximated by translations over the support of
ψ. This representation improves linear classification by creating different non-zero class means
E[|xy∗ψ|] while achieving a lower variance than Fourier coefficients, as it is stable to deformations
(Bruna and Mallat, 2013).

Image classes are usually not invariant to global translations, because of e.g. centered sub-
jects or the sky located in the topmost part of the image. However, classes are often invariant
to local translations, up to an unknown maximum scale. This is captured by the notion of local
stationarity, which means that the probability distribution of xy is nearly invariant to transla-
tions smaller than some maximum scale (Priestley, 1965). The above discussion remains valid
if xy is only locally stationary over a domain larger than the support of ψ. The use of so-called
“windowed absolute spectra” E

[∣∣xy ∗ ψ∣∣] for locally stationary processes has previously been
studied in Tygert et al. (2016).

Real or complex networks. The use of complex numbers is a mathematical abstraction
which allows diagonalizing translations, which are then represented by complex phases. It
provides a mathematical interpretation of filtering operations performed on real numbers. We
show that a real network can still implement complex phase collapses.

In the first layer of a CNN, one can observe that filters are often oscillatory patterns with
small supports, where some filters have nearly the same orientation and frequency but with a
phase shifted by some α (Krizhevsky et al., 2012). We reproduce in Figure 6.2 a figure from
Shang et al. (2016) which evidences this phenomenon. It shows that real filters may be arranged
in groups (ψα)α that can be written ψα = Re(e−iαψ) for a single complex filter ψ and several
phases α. This suggests that real-valued networks may indeed implement phase collapses using
eq. (6.4). A CNN with complex filters is thus a structured real-valued CNN, where several real
filters (ψα)α have been regrouped into a single complex filter ψ. This structure simplifies the
mathematical interpretation of non-linearities by explicitly defining the phase, which is otherwise
a hidden variable relating multiple filter outputs within each layer.

A phase collapse is explicitly computed with a complex wavelet filter and a modulus. It can
also be implicitly calculated by real-valued CNNs. Indeed, for any real-valued signal x, we have

|x ∗ ψ| = 1
2

∫ π

−π
ReLU(x ∗ ψα) dα. (6.4)

Furthermore, this integral is well approximated by a sum over 4 phases, allowing to compute
complex moduli with real-valued filters and ReLUs without biases. See Appendix E.2 for a proof
of eq. (6.4) and its approximation.

6.3 Learned scattering network with phase collapses
This section introduces a learned scattering transform, which is a highly structured CNN archi-
tecture relying on phase collapses and reaching ResNet accuracy on the ImageNet (Russakovsky

86



Section 6.3. Learned scattering network with phase collapses

Figure 6.2: First-layer filters from AlexNet (Krizhevsky et al., 2012). They have been paired so that
they approximately correspond to two different phases of the same complex filter ψ. Figure reproduced
from Shang et al. (2016).

et al., 2015) and CIFAR-10 (Krizhevsky, 2009) datasets.

Scattering transform. Theorem 6.1 proves that a modulus applied to the output of a complex
wavelet filter produces a locally invariant descriptor. This descriptor can then be subsampled,
depending upon the filter’s bandwidth. We briefly review the scattering transform (Mallat, 2012;
Bruna and Mallat, 2013), which iterates phase collapses.

A scattering transform over J scales is implemented with a network of depth J , whose filters
are specified by the choice of wavelet. Let x0 = x. For 0 ≤ j < J , the (j + 1)-th layer xj+1 is
computed by applying a phase collapse on the j-th layer xj . It is implemented by a modulus
which collapses the phases created by a wavelet filtering operator W :

xj+1 =
∣∣Wxj

∣∣. (6.5)

The operator W is defined with Morlet filters (Bruna and Mallat, 2013). It has one low-pass
filter g0, and L zero-mean complex band-pass filters (gℓ)ℓ, having an angular direction ℓπ/L
for 0 < ℓ ≤ L. It thus transforms an input image x(u) into L + 1 sub-band images which are
subsampled by 2:

Wx(u, ℓ) = x ∗ gℓ(2u). (6.6)

The cascade of j low-pass filters g0 with a final band-pass filter gℓ, each followed by a
subsampling, computes wavelet coefficients at a scale 2j . One can also modify the wavelet
filtering W to compute intermediate scales 2j/2, as explained in Appendix E.5. The spatial
subsampling is then only computed every other layer, and the depth of the network becomes
twice larger. Applying a linear classifier on such a scattering transform gives good results on
simple classification problems such as MNIST (LeCun et al., 2010). However, results are well
below ResNet accuracy on CIFAR-10 and ImageNet, as shown in Table 6.1.

Learned Scattering. We have showed in Chapter 5 that a scattering transform can reach
ResNet accuracy by incorporating learned 1 × 1 convolutional operators and soft-thresholding
non-linearities in-between wavelet filters. In contrast, we now introduce a Learned Scatter-
ing architecture whose sole non-linearity is a phase collapse. It shows that neither biases nor
thresholdings are necessary to reach a high accuracy in image classification. A similar result
had previously been obtained on image denoising (Mohan et al., 2019).

87



Chapter 6. Phase Collapse in Deep Networks

The Learned Scattering (LScat) network inserts in eq. (6.5) a learned complex 1×1 convolu-
tional operator Pj which reduces the channel dimensionality of each layer xj before each phase
collapse:

xj+1 =
∣∣WPjxj

∣∣. (6.7)
Similar architectures which separate space-mixing and channel-mixing operators had previously
been studied in the context of basis expansion (Qiu et al., 2018; Ulicny et al., 2019) or to
filter scattering channels (Cotter and Kingsbury, 2019). This separation is also a major feature
of recent architectures such as Vision Transformers (Dosovitskiy et al., 2021) or MLP-Mixer
(Tolstikhin et al., 2021).

Each Pj computes discriminative channels whose spatial variability is eliminated by the phase
collapse operator. Their role is further discussed in Section 6.5. Table 6.1 gives the accuracy of
a linear classifier applied to the last layer of this Learned Scattering. It provides an important
improvement over a scattering transform, but it does not yet reach the accuracy of ResNet-18.

Including the linear classifier, the architecture uses a total number of layers J + 1 = 12 for
ImageNet and J+1 = 9 for CIFAR, by introducing intermediate scales. The number of channels
of Pjxj is the same as in a standard ResNet architecture (He et al., 2016) and remains no larger
than 512. More details are provided in Appendix E.5.

Skip-connections across moduli. Equation (6.7) imposes that all phases are collapsed at
each layer, after computing a wavelet transform. More flexibility is provided by adding a skip-
connection which concatenates WPjxj with its modulus:

xj+1 =
[∣∣WPjxj

∣∣ , WPjxj
]
. (6.8)

The skip-connection produces a cascade of convolutional filters W without non-linearities in-
between. The resulting convolutional operator WW · · ·W is a “wavelet packet” transform which
generalizes the wavelet transform (Coifman and Wickerhauser, 1992). Wavelet packets are ob-
tained as the cascade of low-pass and band-pass filters (gℓ)ℓ, each followed by a subsampling.
Besides wavelets, wavelet packets include filters having a larger spatial support and a narrower
Fourier bandwidth. A wavelet packet transform is then similar to a local Fourier transform. Ap-
plying a modulus on such wavelet packet coefficients defines local spatial invariants over larger
domains.

As discussed in Section 6.2, image classes are usually invariant to local rather than global
translations. Section 6.2 explains that a phase collapse improves discriminability for image
classes that are locally translation-invariant over the filter’s support. Indeed, phases of wavelet
coefficients are then uniformly distributed over [0, 2π], yielding zero-mean coefficients for all
classes. At scales where there is no local translation-invariance, these phases are no longer
uniformly distributed, and they encode information about the spatial localization of features.
Introducing a skip-connection provides the flexibility to choose whether to eliminate phases at
different scales or to propagate them up to the last layer. Indeed, the next 1× 1 operator Pj+1
linearly combines

∣∣WPjxj
∣∣ and WPjxj and may learn to use only one of these. This adds some

localization information, which appears to be important.
Table 6.1 shows that the skip-connection indeed improves classification accuracy. A linear

classifier on this Learned Scattering reaches ResNet-18 accuracy on CIFAR-10 and ImageNet. It
demonstrates that collapsing appropriate phases is sufficient to obtain a high accuracy on large-
scale classification problems. Learning is reduced to 1× 1 convolutions (Pj)j across channels.

6.4 Phase collapses versus amplitude reductions
We now compare phase collapses with amplitude reductions, which are non-linearities which
preserve the phase and act on the amplitude. We show that the accuracy of a Learned Scat-

88



Section 6.4. Phase collapses versus amplitude reductions

Scat LScat LScat + skip ResNet
CIFAR-10 Top-1 error (%) 27.7 11.7 7.7 8.8

ImageNet Top-5 error (%) 54.1 15.2 11.0 10.9
Top-1 error (%) 73.0 35.9 30.1 30.2

Table 6.1: Error of linear classifiers applied to a scattering (Scat), learned scattering (LScat) and
learned scattering with skip connections (+ skip), on CIFAR-10 and ImageNet. The last column gives
the single-crop error of ResNet-20 for CIFAR-10 and ResNet-18 for ImageNet, taken from https: //
pytorch. org/ vision/ stable/ models. html .

tering network is considerably reduced when the phase collapse modulus is replaced by soft-
thresholdings with learned biases. This result remains true for other amplitude reductions and
architectures.

Thresholding and sparsity. A complex soft-thresholding reduces the amplitude of its input
z = |z|eiφ by b while preserving the phase: ρb(z) = ReLU(|z| − b) eiφ. Similarly to its real
counterpart, it is obtained as the proximal operator of the complex modulus (Yang et al., 2012)

ρb(z) = arg min
w∈C

b|w|+ 1
2 |w − z|

2. (6.9)

Soft-thresholdings and moduli have opposite properties, since soft-thresholdings preserve the
phase while attenuating the amplitude, whereas moduli preserve the amplitude while eliminating
the phase. In contrast, ReLUs with biases are more general non-linearities which can act both
on phase and amplitude. This is best illustrated over R where the phase is replaced by the sign,
through the even-odd decomposition. If z ∈ R and λ ≥ 0, then the even part of ReLU(z − λ) is
ReLU(|z| −λ), which is an absolute value with a dead-zone [−λ, λ]. When λ = 0, it becomes an
absolute value |z|. The odd part is a soft-thresholding ρλ(z) = sign(z) ReLU(|z| − λ). Over C,
a similar result can be obtained through the decomposition into phase harmonics (Mallat et al.,
2019).

We have explained how phase collapses can improve the classification accuracy of locally
stationary processes by separating class means E

[∣∣xy ∗ ψ∣∣]. In contrast, since the phase of xy ∗ψ
is uniformly distributed for such processes, then it is also true of ρλ(xy ∗ ψ). This implies that
E
[
ρλ(xy ∗ ψ)

]
= 0 for all λ. Class means of locally stationary processes are thus not separated

by a thresholding.
When class means E[xy ∗ψ] are separated, a soft-thresholding of xy ∗ψ may however improve

classification accuracy. If xy ∗ψ is sparse, then a soft-thresholding ρλ(xy ∗ψ) reduces the within-
class variance as shown in Chapter 5. Coefficients below the threshold may be assimilated to
unnecessary “clutter” which is set to 0. To improve classification, convolutional filters must then
produce high-amplitude coefficients corresponding to discriminative “features”.

Phase collapses versus amplitude reductions. A Learned Scattering with phase collapses
preserves the amplitudes of wavelet coefficients and eliminates their phases. On the opposite,
one may use a non-linearity which preserves the phases of wavelet coefficients but attenuates
their amplitudes, such as a soft-thresholding. We show that such non-linearities considerably
degrade the classification accuracy compared to phase collapses.

Several previous works made the hypothesis that sparsifying neural responses with thresh-
oldings is a major mechanism for improving classification accuracy (Sun et al., 2018; Sulam
et al., 2018, 2019; Mahdizadehaghdam et al., 2019; Zarka et al., 2020). The dimensionality of

89

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html


Chapter 6. Phase Collapse in Deep Networks

Scat
LScat

Mod AThresh ATanh ASigmoid ASign
Without skip 27.7 11.7 36.7 40.7 38.5 39.9

With skip - 7.7 22.5 19.2 17.0 19.5

Table 6.2: Top-1 error (in %) on CIFAR-10 with a linear classifier applied to a Scattering network
(Scat) and several Learned Scattering networks (LScat) with several non-linearities. They include a
modulus (Mod), an amplitude soft-thresholding (Thresh), an amplitude hyperbolic tangent (ATanh), an
amplitude sigmoid (ASigmoid), and an amplitude Soft-sign (ASign).

sparse representations can then be reduced with random filters which implement a form of com-
pressed sensing (Donoho, 2006; Candes et al., 2006). The interpretation of CNNs as compressed
sensing machines with random filters has been studied (Giryes et al., 2016), but it never led to
classification results close to e.g. ResNet accuracy.

To test this hypothesis, we replace the modulus non-linearity in the Learned Scattering ar-
chitecture with thresholdings, or more general phase-preserving non-linearities. A Learned Am-
plitude Reduction Scattering applies a non-linearity ρ(z) which preserves the phases of wavelet
coefficients z = |z|eiφ: ρ(z) = eiφ ρ(|z|). Without skip-connections, each layer xj+1 is computed
from xj with

xj+1 = ρ(WPjxj), (6.10)

and with skip-connections

xj+1 =
[
ρ(WPjxj) , WPjxj

]
. (6.11)

A soft-thresholding is defined by ρ(|z|) = ReLU(|z| − λ) for some threshold λ. We also define
an amplitude hyperbolic tangent ρ(|z|) = (e|z| − e−|z|)/(e|z| + e−|z|), an amplitude sigmoid as
ρ(|z|) = (1 + e−γ log |z|−λ)−1 and an amplitude soft-sign as ρ(|z|) = |z|/(1 + |z|). The soft-
thresholding and sigmoid parameters γ and λ are learned for each layer and each channel.

We evaluate the classification performance of a Learned Amplitude Reduction Scattering on
CIFAR-10, by applying a linear classifier on the last layer. Classification results are given in Ta-
ble 6.2 for different amplitude reductions, with or without skip-connections. Learned Amplitude
Reduction Scatterings yield much larger errors than a Learned Scattering with phase collapses.
Without skip-connections, they are even above a scattering transform, which also uses phase
collapses but does not have learned 1× 1 convolutional projections (Pj)j . It demonstrates that
high accuracies result from phase collapses without biases, as opposed to amplitude reduction
operators including thresholdings, which learn bias parameters.

We repeat this comparison in the real domain, using a standard ResNet-18 architecture
without biases. We replace the ReLU non-linearity by an absolute value or sign collapse |x|
and several sign-preserving (i.e., odd) non-linearities. They include a soft-thresholding ρλ(x) =
sign(x) ReLU(|x|−λ), an hyperbolic tangent ρ(x) = (ex−e−x)/(ex+e−x), and a soft-sign ρ(x) =
x/(1+ |x|). We do not report results for an amplitude sigmoid ρ(x) = sign(x)(1+e−γ log |x|−λ)−1

because of optimization instabilities when learning the parameters γ and λ. Classification results
on the ImageNet dataset are given in Table 6.3. The error of bias-free ReLUs and sign collapses
are comparable to a standard ResNet-18, and confirm that sign collapses are sufficient to reach
such accuracies. In contrast, the performance of amplitude reduction non-linearities, which
preserve the sign of network coefficients, is significantly worse. The superiority of phase collapses
on amplitude reductions thus still holds in the real domain and when the spatial filters are not
constrained to be wavelets.

90



Section 6.5. Iterating phase collapses and amplitude reductions

ResNet
BFResNet

ReLU Abs Thresh Tanh Sign
Top-5 error (%) 10.9 12.3 13.9 25.7 22.4 24.2
Top-1 error (%) 30.2 32.6 35.3 50.0 44.6 49.3

Table 6.3: Classification errors on ImageNet of bias-free ResNet-18 (BFResNet) architectures with
several non-linearities. They include a ReLU, an absolute value which performs sign collapses (Abs), a
soft-thresholding (Thresh), a hyperbolic tangent (Tanh), and a soft-sign (Sign). They are compared to the
original ResNet-18 architecture, which uses a ReLU and learns biases.

ReLUs with biases. Most CNNs, including ResNets, use ReLUs with biases. A ReLU with
bias simultaneously affects the sign and the amplitude of its real input. Over complex numbers,
it amounts to transforming the phase and the amplitude. These numerical experiments show
that accuracy improvements result from acting on the sign or phase rather than the ampli-
tude. Furthermore, this can be constrained to collapsing the phase of wavelet coefficients while
preserving their amplitude.

Several CNN architectures have demonstrated a good classification accuracy with iterated
thresholding algorithms, which increase sparsity. However, all these architecture also modified
the sign of coefficients by computing non-negative sparse codes (Sun et al., 2018; Sulam et al.,
2018; Mahdizadehaghdam et al., 2019) or with additional ReLU or modulus layers (Zarka et al.,
2020, Chapter 5). It seems that it is the sign or phase collapse of these non-linearities which
is responsible for good classification accuracies, as opposed to the calculation of sparse codes
through iterated amplitude reductions.

6.5 Iterating phase collapses and amplitude reductions

We now provide a theoretical justification to the above numerical results in simplified mathemat-
ical frameworks. This section studies the behavior of phase collapses and amplitude reductions
when they are iterated over several layers. It shows that phase collapses benefit from itera-
tions over multiple layers, whereas there is no significant gain in performance when iterating
amplitude reductions.

6.5.1 Iterated phase collapses

We explain the role of iterated phase collapses with multiple filters at each layer. Classification
accuracy is improved through the creation of additional dimensions to separate class means.
The learned projectors (Pj)j are optimized for this separation.

We consider the classification of stationary processes xy ∈ Rd, corresponding to different
image classes indexed by y. Given a realization x of xy, and because of stationarity, the optimal
linear classifier is calculated from the empirical mean 1/d∑u x(u). It computes an optimal linear
estimation of E

[
xy(u)

]
= µy. If all classes have the same mean µy = µ, then all linear classifiers

fail.
As explained in Section 6.2, linear classification can be improved by computing (|x ∗ ψk|)k

for some wavelet filters (ψk)k. These phase collapses create additional directions with non-zero
means which may separate the classes. If xy is stationary, then |xy ∗ ψk| remains stationary
for any ψk. An optimal linear classifier applied to (|x ∗ ψk(u)|)k is thus obtained by a linear
combination of all empirical means (1/d∑u |x ∗ψk(u)|)k. They are proportional to the ℓ1 norm
∥x ∗ ψk∥1, which is a measure of sparsity of x ∗ ψk.

If linear classification on (|x ∗ ψk(u)|)k fails, it reveals that the means E
[
|xy ∗ ψk(u)|

]
= µy,k

are not sufficiently different. Separation can be improved by considering the spatial variations

91



Chapter 6. Phase Collapse in Deep Networks

of |xy ∗ψk(u)| for different y. These variations can be revealed by a phase collapse on a new set
of wavelet filters ψk′ , which computes (||x ∗ ψk| ∗ ψk′ |)k,k′ . This phase collapse iteration is the
principle used by scattering transforms to discriminate textures (Bruna and Mallat, 2013; Sifre
and Mallat, 2013): each successive phase collapse creates additional directions to separate class
means.

However, this may still not be sufficient to separate class means. More discriminant statistical
properties may be obtained by linearly combining (|x∗ψk|)k across k before applying a new filter
ψk′ . In a Learned Scattering with phase collapse, this is done with a linear projector P1 across
the channel indices k, before computing a convolution with the next filter ψk′ . The 1×1 operator
P1 is optimized to improve the linear classification accuracy. It amounts to learning weights wk
such that E[

∣∣∣∑k wk
∣∣xy ∗ ψk∣∣ ∗ ψk′

∣∣∣] is as different as possible for different y. Because these are
proportional to the ℓ1 norms

∥∥∥∑k wk|x ∗ ψk| ∗ ψk′

∥∥∥
1
, it means that the images ∑k wk|x ∗ ψk|∗ψk′

have different sparsity levels depending upon the class y of x. The weights (wk)k of P1 can thus
be interpreted as features along channels providing different sparsifications for different classes.
A Learned Scattering network learns such Pj at each scale j.

6.5.2 Iterated amplitude reductions

Sparse representations and amplitude reduction algorithms may improve linear classification by
reducing the variance of class mean estimations, which can be interpreted as clutter removal.
We studied these approaches in Chapter 5 by modeling the clutter as an additive white noise.
Although a single thresholding step may improve linear classification, we show that iterating
more than one thresholding does not improve the classification accuracy, if no phase collapses
are inserted.

To understand these properties, we consider the discrimination of classes xy for which class
means E[xy] = µy are all different. If there exists y′ such that ∥µy − µy′∥ is small, then the
class y can still be discriminated from y′ if we can estimate E[xy] sufficiently accurately from a
single realization of xy. This is a mean estimation problem. Suppose that xy = µy +N (0, σ2)
is contaminated with Gaussian white noise, where the noise models some clutter. Suppose also
that there exists a linear orthogonal operator D such that DTµy is sparse for every y, and
hence has its energy concentrated in few non-zero coefficients. Such a D may be computed by
minimizing the expected ℓ1 norm ∑

y E
[
∥DTxy∥1

]
. The estimation of µy can be improved with

a soft-thresholding estimator (Donoho and Johnstone, 1994), which sets to zero all coefficients
below a threshold λ proportional to σ. It amounts to computing ρλ(DTx), where ρλ is a soft-
thresholding.

However, we explain below why this approach cannot be further iterated without inserting
phase collapses. The reason is that a sparse representation ρλ(DTx) concentrates its entropy in
the phases of the coefficients, rather than their amplitude. We then show that such processes
cannot be further sparsified, which means that a second thresholding ρλ′(D′Tρλ(DTx)) will not
reduce further the variance of class mean estimators. This entails that a model of within-class
variability relying on amplitude reductions cannot be the sole mechanism behind the performance
of deep networks.

Iterating amplitude reductions may however be useful if it is alternated with another non-
linearity which partly or fully collapses phases. Reducing the entropy of the phases of ρλ(DTx)
allows ρλ′D′T to further sparsify the process and hence further reduce the within-class variability.
As mentioned in Section 6.4, this is the case for previous work which used iterated sparsification
operators (Sun et al., 2018; Sulam et al., 2018; Mahdizadehaghdam et al., 2019). Indeed, these
networks compute non-negative sparse codes where sparsity is enforced with a ReLU, which acts
both on phases and amplitudes. Our results shows that the benefit of iterating non-negative
sparse coding comes from the sign collapse due to the non-negativity constraint.

92



Section 6.6. Discussion

We now qualitatively demonstrate these claims with two theorems. We first show that finding
the sparsest representation of a random process (i.e., minimizing its ℓ1 norm) is the same as
maximizing a lower bound on the entropy of its phases.

Theorem 6.2. Let x denote a random vector in Cd with a probability density p. Let H(x) be
the entropy of x with respect to the Lebesgue measure

H(x) = −
∫
p(x) log p(x) dx.

If D ∈ U(d) is a unitary operator, then

H
(
φ(DTx)

∣∣∣ ∣∣∣DTx
∣∣∣) ≥ H(x)− d− 2d log

(1
d
E
[∥∥∥DTx

∥∥∥
1

])
,

where φ(DTx) ∈ [0, 2π]d (resp.
∣∣∣DTx

∣∣∣ ∈ Rd+) is the random process of the entry-wise phases
(resp. moduli) of DTx.

The proof is in Appendix E.3. This theorem gives a lower-bound on the conditional entropy
of the phases of DTx with a decreasing function of the expected ℓ1 norm of DTx. Minimizing over
D this expected ℓ1 norm amounts to maximizing the lower bound on H

(
φ(DTx)

∣∣∣ ∣∣∣DTx
∣∣∣). An

extreme situation arises when this entropy reaches its maximal value of d log(2π). In this case,
the phase φ(DTx) has a maximum-entropy distribution and is therefore uniformly distributed in
[0, 2π]d. Moreover, in this extreme case φ(DTx) is independent from

∣∣∣DTx
∣∣∣, since its conditional

distribution does not depend on
∣∣∣DTx

∣∣∣. Such statistical properties have previously been observed
on wavelet coefficients of natural images (Wainwright et al., 2001a), where the wavelet transform
seems to be a nearly optimal sparsifying unitary dictionary.

The second theorem considers the extreme case of a random process whose phases are condi-
tionally independent and uniform. It proves that such a process cannot be significantly sparsified
with a change of basis.

Theorem 6.3. Assume that φ(ρλ(DTx)) is uniformly distributed in [0, 2π]d and independent
from |ρλ(DTx)|. Then there exists a constant Cd > 0 which depends on the dimension d, such
that for any D′ ∈ U(d),

E
[
∥D′Tρλ(DTx)∥1

]
≥ CdE

[∥∥∥ρλ(DTx)
∥∥∥

1

]
.

The proof is in Appendix E.4. This theorem shows that random processes with conditionally
independent and uniform phases have an ℓ1 norm which cannot be significantly decreased by
any unitary transformation. Numerical evaluations suggest that the constant Cd may be chosen
to be

√
π/2 ≈ 0.886, independently of the dimension d. This constant arises as the value of

E[|Z|] when Z is a complex normal random variable with E[|Z|2] = 1.
These two theorems explain qualitatively that linear classification on ρλ(DTx) cannot be

improved by another thresholding that would take advantage of another sparsification operator.
Indeed, Theorem 6.2 shows that if ρλ(DTx) is sparse, then its phases have random fluctuations
of high entropy. Theorem 6.3 indicates that such random phases prevent a further sparsification
of ρλ(DTx) with some linear operator D′. Applying a second thresholding ρλ′(D′Tρλ(DTx))
thus cannot significantly reduce the variance of class mean estimators.

6.6 Discussion
This chapter studies the improvement of linear separability for image classification in deep
convolutional networks. We show that it mostly relies on a phase collapse phenomenon. Elimi-
nating the phase of wavelet coefficients improves the separation of class means. We introduced a

93



Chapter 6. Phase Collapse in Deep Networks

Learned Scattering network with wavelet phase collapses and learned 1× 1 convolutional filters
Pj , which reaches ResNet accuracy. The learned 1× 1 operators Pj enhance discriminability by
computing channels that have different levels of sparsity for different classes. This architecture
is used in Chapter 7 to reduce the study of learned weights to the operators Pj along channels.

When class means are separated, thresholding non-linearities can improve classification by
reducing the variance of class mean estimators. When used alone, the classification performance
is poor over complex datasets such as ImageNet or CIFAR-10, because class means are not
sufficiently separated. Furthermore, the iteration of thresholdings on sparsification operators
requires intermediary phase collapses.

These results show that linear separation of classes result from acting on the sign or phase
of network coefficients rather than their amplitude. Furthermore, this can be constrained to
collapsing the phase of wavelet coefficients while preserving their amplitude. The elimination of
spatial variability with phase collapses is thus both necessary and sufficient to linearly separate
classes on complex image datasets.

94



Part III

A Model of Network Weights with
Aligned Random Features





Chapter

7
The Rainbow Model of Deep
Networks

Chapter content
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Rainbow networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.1 Rotations in random feature maps . . . . . . . . . . . . . . . . . . . . . 100
7.2.2 Deep rainbow networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2.3 Symmetries and convolutional rainbow networks . . . . . . . . . . . . . 109

7.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3.1 Convergence of activations in the infinite-width limit . . . . . . . . . . . 112
7.3.2 Properties of learned weight covariances . . . . . . . . . . . . . . . . . . 114
7.3.3 Gaussian rainbow approximations . . . . . . . . . . . . . . . . . . . . . 120

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

We have introduced in Chapters 5 and 6 constrained non-linear operators to structure deep
convolutional network architectures in image classification. It has resulted in learned scattering
network architectures, which use fixed spatial wavelet filters but learn linear operators along
channels. A major issue is now to understand the nature of these learned operators and their
mathematical properties.

This chapter introduce a probabilistic model of the learned weights in deep neural networks.
The model cascades random feature maps whose weight distributions are learned. It assumes
that dependencies between weights at different layers are reduced to rotations which align the
input activations. Neuron weights within a layer are independent after this alignment. Their
activations define kernels which become deterministic in the infinite-width limit. This is verified
numerically for ResNets trained on the ImageNet dataset.

We also show that the learned weight distributions have low-rank covariances. Rainbow
networks thus alternate between linear dimension reductions and non-linear high-dimensional
embeddings with white random features. Gaussian rainbow networks are defined with Gaussian
weight distributions. These models are validated numerically on image classification on the
CIFAR-10 dataset, with wavelet scattering networks. We further show that during training,
SGD updates the weight covariances while mostly preserving the Gaussian initialization.

This chapter is adapted from the following preprint: Florentin Guth, Brice Ménard, Gas-
par Rochette, and Stéphane Mallat. A rainbow in deep network black boxes. arXiv preprint
arXiv:2305.18512, 2023.

Notations. Some notations of this chapter are reversed with respect to the ones of Chapters 5
and 6, in order to emphasize different aspects of the same operator. In this chapter, we use the
letter W to refer to the weight matrix of a linear layer. In Section 7.2.3, we write the operator
W = LP , where L is a learned 1× 1 convolution operator (denoted P in Chapters 5 and 6) and
P is a predefined spatial convolution (which may be composed of wavelet filters, denoted W in



Chapter 7. The Rainbow Model of Deep Networks

Chapters 5 and 6). Additionally, for learned scattering architectures, we impose that L and P
commute, so that we implement W = P L. This recovers the order between the operators in
Chapter 6.

7.1 Introduction
Deep neural networks have been described as black boxes because many of their fundamental
properties are not understood. Their weight matrices are learned by performing stochastic
gradient descent from a random initialization. Each training run thus results in a different
set of weight matrices, which can be considered as a random realization of some probability
distribution. What is this probability distribution? What is the corresponding functional space?
Do all networks learn the same function, and even the same weights, up to some symmetries?
This chapter addresses these questions.

Theoretical studies have mostly focused on shallow learning. A first line of work has studied
learning of the last layer while freezing the other ones. The previous layers thus implement
random features (Jarrett et al., 2009; Pinto et al., 2009) which specify a kernel that becomes
deterministic in the infinite-width limit (Rahimi and Recht, 2007; Daniely et al., 2016). Learning
has then been incorporated in these models. Neal (1996); Williams (1996); Lee et al. (2018);
Matthews et al. (2018) show that some networks behave as Gaussian processes. Training is then
modeled as sampling from the Bayesian posterior given the training data. On the other hand,
Jacot et al. (2018) and Lee et al. (2019b) assume that trained weights have small deviations
from their initialization. In these cases, learning is in a “lazy” regime (Chizat et al., 2019)
specified by a fixed kernel. It has been opposed to a “rich” or feature-learning regime (Chizat
and Bach, 2020; Woodworth et al., 2020), which achieves higher performance on complex tasks
(Lee et al., 2020; Geiger et al., 2020). Empirical observations of weight statistics have indeed
shown that they significantly evolve during training (Martin and Mahoney, 2021; Thamm et al.,
2022). This has been precisely analyzed for one-hidden-layer networks in the infinite-width
“mean-field” limit (Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018;
Sirignano and Spiliopoulos, 2020), which allows tracking the neuron weight distribution as it
evolves away from the Gaussian initialization during training. The generalization to deeper
networks is greatly complicated by the fact that intermediate activations depend on the random
weight realizations (Sirignano and Spiliopoulos, 2022; E and Wojtowytsch, 2020; Nguyen and
Pham, 2020; Chen et al., 2022c; Yang and Hu, 2021). However, numerical experiments (Raghu
et al., 2017; Kornblith et al., 2019) show that intermediate activations correlate significantly
across independent realizations, which calls for an explanation of this phenomenon.

Building upon these ideas, we introduce the rainbow model of the joint probability distribu-
tion of trained network weights across layers. It assumes that dependencies between the weight
matrices Wj at all layers j are reduced to rotations. This means that Wj = W ′

jÂj−1, where
W ′

1, . . . ,W
′
J are independent random matrices, and Âj−1 is a rotation that depends on the pre-

vious layer weights W1, . . . ,Wj−1. The W ′
j are further assumed to be random feature matrices,

that is, their rows are independent and identically distributed.
The functional properties of rainbow networks depend on the random feature distribution

at each layer. We show numerically that weights of trained networks typically have low-rank
covariances. The corresponding rainbow networks thus implement dimensionality reductions in-
between the high-dimensional random feature embeddings, similar to previous works (Cho and
Saul, 2009; Mairal, 2016; Bietti, 2019). We further demonstrate that input activation covariances
provide efficient approximations of the eigenspaces of the weight covariances. The number
of model parameters and hence the supervised learning complexity can thus be considerably
reduced by unsupervised information.

The weight covariances completely specify the rainbow network output and properties when
the weight distributions are Gaussian. The eigenvectors of these weight covariances can be in-

98



Section 7.1. Introduction

Figure 7.1: A deep rainbow network cascades random feature maps whose weight distributions are
learned. They typically have a low-rank covariance. Each layer can be factorized into a linear dimension-
ality reduction determined by the colored covariance, followed by a non-linear high-dimensional embedding
with white random features. At each layer, the hidden activations define a kernel which converges to a
deterministic rainbow kernel in the infinite width limit. It induces a random rotation of the next layer
weights. For Gaussian rainbow networks, the random feature embedding is a dot-product kernel feature
map which does not need to be rotated.

terpreted as learned features, rather than individual neuron weights which are random. This
Gaussian assumption is too restrictive to model arbitrary trained networks. However, it can ap-
proximately hold for architectures which incorporate prior information and restrict their learned
weights. In some of our numerical experiments, we will thus consider learned scattering networks
introduced in Chapters 5 and 6, which have fixed wavelet spatial filters and learn weights along
channels only.

This chapter makes the following main contributions:

• We prove that the rainbow network activations converge to a random rotation of a de-
terministic kernel feature vector in the infinite-width limit, which explains the empirical
results of representation similarity of Raghu et al. (2017) and Kornblith et al. (2019). We
verify numerically this convergence on scattering networks and ResNets trained on the
CIFAR-10 and ImageNet image classification datasets. We conjecture but do not prove
that this convergence conversely implies the first rainbow assumption that layer depen-
dencies are reduced to rotations.

• We validate the Gaussian rainbow model for scattering networks trained on CIFAR-10.
We verify that the weight covariances converge up to rotation when the width increases,
and that the weights are approximately Gaussian. The weight covariances are sufficient
to sample rainbow weights and define new networks that achieve comparable classification
accuracy as the original trained network when the width is large enough. Further, we show
that SGD training only updates the weight covariances while nearly preserving the white
random feature initializations, suggesting a possible explanation for the Gaussian rainbow
assumption in this setting.

• We prove that equivariance to general groups can be achieved in rainbow networks with
weight distributions that are invariant to the group action. This constraint on distributions
rather than on individual neurons (Cohen and Welling, 2016; Kondor and Trivedi, 2018)
avoids any weight sharing or synchronizations, which are difficult to implement in biological
systems.

The rainbow model is illustrated in Figure 7.1. In Section 7.2, we introduce rainbow networks

99



Chapter 7. The Rainbow Model of Deep Networks

and the associated kernels that describe their infinite-width limit. We validate numerically the
above properties and results in Section 7.3.

7.2 Rainbow networks
Weight matrices of learned deep networks are strongly dependent across layers. Deep rainbow
networks define a mathematical model of these dependencies through rotation matrices that
align input activations at each layer. We review in Section 7.2.1 the properties of random
features, which are the building blocks of the model. We then introduce in Section 7.2.2 deep
fully-connected rainbow networks, which cascade aligned random feature maps. We show in
Section 7.2.3 how to incorporate inductive biases in the form of symmetries or local neuron
receptive fields. We also extend rainbow models to convolutional networks.

7.2.1 Rotations in random feature maps

We being by reviewing the properties of one-hidden layer random feature networks. We then
prove that random weight fluctuations produce a random rotation of the hidden activation layer
in the limit of infinite layer width. The rainbow network model will be obtained by applying
this result at all layers of a deep network.

Random feature network. A one-hidden layer network computes a hidden activation layer
with a matrix W of size d1 × d0 and a pointwise non-linearity ρ:

φ̂(x) = ρ(Wx) for x ∈ Rd0 .

We consider a random feature network (Rahimi and Recht, 2007). The rows of W , which contain
the weights of different neurons, are independent and have the same probability distribution π:

W = (wi)i≤d1
with i.i.d. wi ∼ π.

In many random feature models, each row vector has a known distribution with uncorrelated
coefficients (Jarrett et al., 2009; Pinto et al., 2009). Learning is then reduced to calculating the
output weights θ̂, which define

f̂(x) = ⟨θ̂, φ̂(x)⟩.

In contrast, we consider general distributions π which will be estimated from the weights of
trained networks in Section 7.3.

Our network does not include any bias for simplicity. Bias-free networks have been shown to
achieve comparable performance as networks with biases for denoising (Mohan et al., 2019) and
image classification in Chapters 5 and 6. However, biases can easily be incorporated in random
feature models and thus rainbow networks.

We consider a normalized network, where ρ includes a division by
√
d1 so that ∥φ̂(x)∥ remains

of the order of unity when the width d1 increases. We shall leave this normalization implicit to
simplify notations, except when illustrating mathematical convergence results. Note that this
choice differs from the so-called standard parameterization (Yang and Hu, 2021). In numerical
experiments, we perform SGD training with this standard parameterization which avoids getting
trapped in the lazy training regime (Chizat et al., 2019). Our normalization convention is only
applied at the end of training, where the additional factor of

√
d1 is absorbed in the next-layer

weights θ̂.
We require that the input data has finite energy: Ex[∥x∥2] < +∞. We further assume

that the non-linearity ρ is Lipschitz, which is verified by many non-linearities used in practice,
including ReLU. Finally, we require that the random feature distribution π has finite fourth-
order moments.

100



Section 7.2. Rainbow networks

Kernel convergence. We now review the convergence properties of one-hidden layer random
feature networks. This convergence is captured by the convergence of their kernel (Rahimi and
Recht, 2007, 2008),

k̂(x, x′) = ⟨φ̂(x), φ̂(x′)⟩ = 1
d1

d1∑
i=1

ρ(⟨x,wi⟩) ρ(⟨x′, wi⟩),

where we have made explicit the factor d−1
1 coming from our choice of normalization. Since

the rows wi are independent and identically distributed, the law of large numbers implies that
when the width d1 goes to infinity, this empirical kernel has a mean-square convergence to the
asymptotic kernel

k(x, x′) = Ew∼π
[
ρ(⟨x,w⟩) ρ(⟨x′, w⟩)

]
. (7.1)

This convergence means that even though φ̂ is random, its geometry (as described by the
resulting kernel) is asymptotically deterministic. As we will see, this imposes that random
fluctuations of φ̂(x) are reduced to rotations.

Let φ(x) be an infinite-dimensional deterministic colored feature vector in a separable Hilbert
space H, which satisfies

⟨φ(x), φ(x′)⟩H = k(x, x′). (7.2)

Such feature vectors always exist (Aronszajn, 1950, see also Schölkopf and Smola, 2002). For
instance, one can choose φ(x) = (ρ(⟨x,w⟩))w, the infinite-width limit of random features ρW .
In that case, H = L2(π), that is, the space of square-integrable functions with respect to π,
with dot-product ⟨g, h⟩H = Ew∼π[g(w)h(w)]. This choice is however not unique: one can obtain
other feature vectors defined in other Hilbert spaces by applying a unitary transformation to φ,
which does not modify the dot product in eq. (7.2). In the following, we choose the kernel PCA
(KPCA) feature vector, whose covariance matrix Ex[φ(x)φ(x)T] is diagonal with decreasing
values along the diagonal, introduced by Schölkopf et al. (1997). It is obtained by expressing
any feature vector φ in its PCA basis relative to the distribution of x. In this case H = ℓ2(N).

Finally, we denote by H the reproducing kernel Hilbert space (RKHS) associated to the
kernel k in eq. (7.1). It is the space of functions f which can be written f(x) = ⟨θ, φ(x)⟩H , with
norm ∥f∥H = ∥θ∥H .1 A random feature network defines approximations of functions in this
RKHS. With H = L2(π), these functions can be written

f(x) = Ew∼π[θ(w) ρ(⟨x,w⟩)] =
∫
θ(w) ρ(⟨x,w⟩) dπ(w).

This expression is equivalent to the mean-field limit of one-hidden-layer networks (Chizat and
Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos,
2020), which we will generalize to deep networks in Section 7.2.2.

Rotation alignment. We now introduce rotations which align approximate kernel feature
vectors. By abuse of language, we use rotations as a synonym for orthogonal transformations,
and also include improper rotations which are the composition of a rotation with a reflection.

We have seen that the kernel k̂(x, x′) = ⟨φ̂(x), φ̂(x′)⟩ converges to the kernel k(x, x′) =
⟨φ(x), φ(x′)⟩. We thus expect (and will later prove) that there exists a rotation Â such that
Â φ̂ ≈ φ because all feature vectors of the kernel k are rotations of one another. The rotation Â
is dependent on the random feature realization W and is thus random. The network activations
φ̂(x) ≈ ÂTφ(x) are therefore a random rotation of the deterministic feature vector φ(x). For
the KPCA feature vector φ, Â approximately computes an orthonormal change of coordinate of
φ̂(x) to its PCA basis.

1We shall always assume that θ is the minimum-norm vector such that f(x) = ⟨θ, φ(x)⟩H .

101



Chapter 7. The Rainbow Model of Deep Networks

For any function f(x) = ⟨θ, φ(x)⟩H in H, if the output layer weights are θ̂ = ÂTθ, then the
network output is

f̂(x) = ⟨ÂTθ, φ̂(x)⟩ = ⟨θ, Â φ̂(x)⟩H ≈ f(x).

This means that the final layer coefficients θ̂ can cancel the random rotation Â introduced by
W , so that the random network output f̂(x) converges when the width d1 increases to a fixed
function in H. This propagation of rotations across layers is key to understanding the weight
dependencies in deep networks. We now make the above arguments more rigorous and prove
that φ̂ and f̂ respectively converge to φ and f , for an appropriate choice of Â.

We write O(d1) the set of linear operators A from Rd1 to H = ℓ2(N) which satisfy ATA =
Idd1

. Each A ∈ O(d1) computes an isometric embedding of Rd1 into H, while AT is an orthogonal
projection onto a d1-dimensional subspace of H which can be identified with Rd1 . The alignment
Â of φ̂ to φ is defined as the minimizer of the mean squared error:

Â = arg min
Â∈O(d1)

Ex
[
∥Â φ̂(x)− φ(x)∥2H

]
. (7.3)

This optimization problem, known as the (orthogonal) Procrustes problem (Hurley and Cat-
tell, 1962; Schönemann, 1966), admits a closed-form solution, computed from a singular value
decomposition of the (uncentered) cross-covariance matrix between φ and φ̂:

Â = UV T with Ex
[
φ(x) φ̂(x)T

]
= USV T. (7.4)

The mean squared error (7.3) of the optimal Â (7.4) is then

Ex
[
∥Â φ̂(x)− φ(x)∥2H

]
= trEx

[
φ̂(x) φ̂(x)T

]
+ trEx

[
φ(x)φ(x)T

]
− 2

∥∥∥Ex[φ(x) φ̂(x)T
]∥∥∥

1
, (7.5)

where ∥·∥1 is the nuclear (or trace) norm, that is, the sum of the singular values. Equation (7.5)
defines a distance between the representations φ̂ and φ which is related to various similarity
measures used in the literature.2

The alignment rotation (7.3,7.4) was used by Haxby et al. (2011) to align fMRI response
patterns of human visual cortex from different individuals, and by Smith et al. (2017) to align
word embeddings from different languages. Alignment between network weights has also been
considered in previous works, but it was restricted to permutation matrices (Entezari et al., 2022;
Benzing et al., 2022; Ainsworth et al., 2022). Permutations have the advantage of commuting
with pointwise non-linearities, and can therefore be introduced while exactly preserving the
network output function. However, they are not sufficiently rich to capture the variability of
random features. It is shown in Entezari et al. (2022) that the error after permutation alignment
converges to zero with the number of random features d1 at a polynomial rate which is cursed
by the dimension d0 of x. On the contrary, the following theorem proves that the error after
rotation alignment has a convergence rate which is independent of the dimension d0.

2By normalizing the variance of φ and φ̂, eq. (7.5) can be turned into a similarity measure
∥Ex[φ(x) φ̂(x)T]∥1/

√
Ex[∥φ(x)∥2]Ex[∥φ̂(x)∥2]. It is related to the kernel alignment used by Cristianini et al.

(2001); Cortes et al. (2012); Kornblith et al. (2019), although the latter is based on the Frobenius norm of the
cross-covariance matrix Ex[φ(x) φ̂(x)T] rather than the nuclear norm. Both similarity measures are invariant to
rotations of either φ or φ̂ and therefore only depend on the kernels k and k̂, but the nuclear norm has a geometrical
interpretation in terms of an explicit alignment rotation (7.4). Further, Appendix F.1 shows that the formulation
(7.5) has connections to optimal transport through the Bures-Wasserstein distance (Bhatia et al., 2019). Canoni-
cal correlation analysis also provides an alignment, although not in the form of a rotation. It is based on a singular
value decomposition of the cross-correlation matrix Ex[φ(x) φ(x)T]−1/2 Ex[φ(x) φ̂(x)T]Ex[φ̂(x) φ̂(x)T]−1/2 rather
than the cross-covariance, and is thus sensitive to noise in the estimation of the covariance matrices (Raghu et al.,
2017; Morcos et al., 2018). Equivalently, it corresponds to replacing φ and φ̂ with their whitened counterparts
Ex[φ(x) φ(x)T]−1/2

φ and Ex[φ̂(x) φ̂(x)T]−1/2
φ̂ in eqs. (7.3) to (7.5).

102



Section 7.2. Rainbow networks

Theorem 7.1. Assume that Ex[∥x∥2] < +∞, ρ is Lipschitz, and π has finite fourth order
moments. Then there exists a constant c > 0 which does not depend on d0 nor d1 such that

EW,x,x′

[
|k̂(x, x′)− k(x, x′)|2

]
≤ c d−1

1 ,

where x′ is an i.i.d. copy of x. Suppose that the sorted eigenvalues λ1 ≥ · · · ≥ λm ≥ · · ·
of Ex[φ(x)φ(x)T ] satisfy λm = O(m−α) with α > 1. Then the alignment Â defined in (7.3)
satisfies

EW,x
[
∥Â φ̂(x)− φ(x)∥2H

]
≤ c d−η

1 with η = α− 1
2(2α− 1) > 0.

Finally, for any f(x) = ⟨θ, φ(x)⟩H in H, if θ̂ = ÂTθ then

EW,x
[
|f̂(x)− f(x)|2

]
≤ c ∥f∥2H d−η

1 .

The proof is given in Appendix F.1. The convergence of the empirical kernel k̂ to the
asymptotic kernel k is a direct application of the law of large numbers. The mean-square
distance (7.5) between Â φ̂ and φ is then rewritten as the Bures-Wasserstein distance (Bhatia
et al., 2019) between the kernel integral operators associated to k̂ and k. It is controlled by
their mean-square distance via an entropic regularization of the underlying optimal transport
problem (see, e.g., Peyré and Cuturi, 2019). The convergence rate is then obtained by exploiting
the eigenvalue decay of the kernel integral operator.

Theorem 7.1 proves that there exists a rotation Â which nearly aligns the hidden layer of a
random feature network with any feature vector of the asymptotic kernel, with an error which
converges to zero. The network output converges if that same rotation is applied on the last layer
weights. We will use this result in the next section to define deep rainbow networks, but we note
that it can be of independent interest in the analysis of random feature representations. The
theorem assumes a power-law decay of the covariance spectrum of the feature vector φ (which
is independent of the choice of φ satisfying eq. (7.2)). Because ∑∞

m=1 λm = Ex[∥φ(x)∥2] < +∞
(as shown in the proof), a standard result implies that λm = o(m−1), so the assumption α > 1
is not too restrictive. The constant c is explicit and depends polynomially on the constants
involved in the hypotheses (except for the exponent α). The convergence rate η = α−1

2(2α−1) is an
increasing function of the power-law exponent α. It vanishes in the critical regime when α→ 1,
and increases to 1

4 when α → ∞. This bound might be pessimistic in practice, as a heuristic
argument suggests a rate of 1

2 when α → ∞ based on the rate 1 on the kernels. A comparison
with convergence rates of random features KPCA (Sriperumbudur and Sterge, 2022) indeed
suggests it might be possible to improve the convergence rate to α−1

2α−1 . Although we give results
in expectation for the sake of simplicity, bounds in probability can be obtained using Bernstein
concentration bounds for operators (Tropp, 2012; Minsker, 2017) in the spirit of Rudi et al.
(2013); Bach (2017b).

7.2.2 Deep rainbow networks

The previous section showed that the hidden layer of a random feature network converges to an
infinite-dimensional feature vector, up to a rotation defined by the alignment Â. This section
defines deep fully-connected rainbow networks by cascading conditional random features, whose
kernels also converge in the infinite-width limit. It provides a model of the joint probability
distribution of weights of trained networks, whose layer dependencies are captured by alignment
rotation matrices.

We consider a deep fully-connected neural network with J hidden layers, which iteratively
transforms the input data x ∈ Rd0 with weight matrices Wj of size dj × dj−1 and a pointwise
non-linearity ρ, to compute each activation layer of depth j:

ϕ̂j(x) = ρWj · · · ρW1 x.

103



Chapter 7. The Rainbow Model of Deep Networks

ρ includes a division by
√
dj , which we do not write explicitly to simplify notations. After J

non-linearities, the last layer outputs

f̂(x) = ⟨θ̂, ϕ̂J(x)⟩.

Infinite-width rainbow networks. A rainbow model defines each Wj conditionally on the
previous (Wℓ)ℓ<j as a random feature matrix. The distribution of random features at layer j is
rotated to account for the random rotation introduced by ϕ̂j−1. We first introduce infinite-width
rainbow networks which define the asymptotic feature vectors used to compute these rotations.

Definition 7.1. An infinite-width rainbow network has activation layers defined in a separable
Hilbert space Hj for any j ≤ J by

ϕj(x) = φj(φj−1(. . . φ1(x) . . . )) ∈ Hj for x ∈ H0 = Rd0 ,

where each φj : Hj−1 → Hj is defined from a probability distribution πj on Hj−1 by

⟨φj(z), φj(z′)⟩Hj
= Ew∼πj

[
ρ(⟨z, w⟩Hj−1

) ρ(⟨z′, w⟩Hj−1
)
]

for z, z′ ∈ Hj−1. (7.6)

It defines a rainbow kernel
kj(x, x′) = ⟨ϕj(x), ϕj(x′)⟩Hj

.

For θ ∈ HJ , the infinite-width rainbow network outputs

f(x) = ⟨θ, ϕJ(x)⟩HJ
∈ HJ ,

where HJ is the RKHS of the rainbow kernel kJ of the last layer. If all probability distributions
πj are Gaussian, then the rainbow network is said to be Gaussian.

Each activation layer ϕj(x) ∈ Hj of an infinite-width rainbow network has an infinite di-
mension and is deterministic. We shall see that the cascaded feature maps φj are infinite-width
limits of ρWj up to rotations. One can arbitrarily rotate a feature vector φj(z) which satisfies
(7.6), which also rotates the Hilbert space Hj and ϕj(x). If the distribution πj+1 at the next
layer (or the weight vector θ if j = J) is similarly rotated, this operation preserves the dot
products ⟨ϕj(x), w⟩Hj

for w ∼ πj+1. It therefore does not affect the asymptotic rainbow kernels
at each depth j:

kj(x, x′) = Ew∼πj

[
ρ(
〈
ϕj−1(x), w

〉
Hj−1

) ρ(⟨ϕj−1(x′), w⟩Hj−1
)
]
, (7.7)

as well as the rainbow network output f(x). We shall fix these rotations by choosing KPCA
feature vectors. This imposes that Hj = ℓ2(N) and Ex[ϕj(x)ϕj(x)T] is diagonal with decreasing
values along the diagonal. The random feature distributions πj are thus defined with respect to
the PCA basis of ϕj(x). Infinite-width rainbow networks are then uniquely determined by the
distributions πj and the last-layer weights θ.

The weight distributions πj for j ≥ 2 are defined in the infinite-dimensional space Hj−1 and
some care must be taken. We say that a distribution π on a Hilbert space H has bounded
second-order moments if its (uncentered) covariance operator Ew∼π[wwT] is bounded (for the
operator norm). The expectation is to be understood in a weak sense: we assume that there
exists a bounded operator C on H such that zTCz′ = Ew∼π[⟨z, w⟩H⟨z′, w⟩H ] for z, z′ ∈ H.
We further say that π has bounded fourth-order moments if for every trace-class operator T
(that is, such that tr(TTT )1/2 < +∞), Ew∼π[(wTTw)2] < +∞. We will assume that the
weight distributions πj have bounded second- and fourth-order moments. Together with our
assumptions that Ex[∥x∥2] < +∞ and that ρ is Lipschitz, this verifies the existence of all the

104



Section 7.2. Rainbow networks

infinite-dimensional objects we will use in the sequel. For the sake of brevity, we shall not
mention these verifications in the main text and defer them to Appendix F.2. Finally, we note
that we can generalize rainbow networks to cylindrical measures πj , which define cylindrical
random variables w (Vakhania et al., 1987, see also Riedle, 2011 or Gawarecki and Mandrekar,
2011, Section 2.1.1). Such cylindrical random variables w are linear maps such that w(z) is
a real random variable for every z ∈ Hj−1. w(z) cannot necessarily be written ⟨z, w⟩ with a
random w ∈ Hj−1. We still write ⟨z, w⟩ by abuse of notation, with the understanding that it
refers to w(z). For example, we will see that finite-width networks at initialization converge to
infinite-width rainbow networks with πj = N (0, Id), which is a cylindrical measure but not a
measure when Hj−1 is infinite-dimensional.

Dimensionality reduction. Empirical observations of trained deep networks show that they
have approximately low-rank weight matrices (Martin and Mahoney, 2021; Thamm et al., 2022).
They compute a dimensionality reduction of their input, which is characterized by the singular
values of the layer weight Wj , or equivalently the eigenvalues of the empirical weight covariance
d−1
j WT

j Wj . For rainbow networks, the uncentered covariances Cj = Ew∼πj
[wwT] of the weight

distributions πj therefore capture the linear dimensionality reductions of the network. If C1/2
j

is the symmetric square root of Cj , we can rewrite (7.6) with a change of variable as

φj(z) = φ̃j
(
C

1/2
j z

)
with ⟨φ̃j(z), φ̃j(z′)⟩Hj

= Ew∼π̃j

[
ρ(⟨z, w⟩) ρ(⟨z′, w⟩)

]
,

where π̃j has an identity covariance. Rainbow network activations can thus be written:

ϕj(x) = φ̃j C
1/2
j · · · φ̃1C

1/2
1 x. (7.8)

Each square root C1/2
j performs a linear dimensionality reduction of its input, while the white

random feature maps φ̃j compute high-dimensional non-linear embeddings. Such linear dimen-
sionality reductions in-between kernel feature maps had been previously considered in previous
works (Cho and Saul, 2009; Mairal, 2016; Bietti, 2019).

Gaussian rainbow networks. The distributions πj are entirely specified by their covariance
Cj for Gaussian rainbow networks, where we then have

πj = N (0, Cj).

When the covariance Cj is not trace-class, πj is a cylindrical measure as explained above. If ρ
is a homogeneous non-linearity such as ReLU, on can derive (Cho and Saul, 2009) from (7.7)
that Gaussian rainbow kernels can be written from a homogeneous dot-product:

kj(x, x′) = ∥zj(x)∥ ∥zj(x′)∥κ
(
⟨zj(x), zj(x′)⟩
∥zj(x)∥ ∥zj(x′)∥

)
with zj(x) = C

1/2
j ϕj−1(x), (7.9)

where κ is a scalar function which depends on the non-linearity ρ. The Gaussian rainbow kernels
kj and the rainbow RKHS HJ only depend on the covariances (Cj)j≤J . If Cj = Id for each j,
then kj remains a dot-product kernel because ⟨zj(x), zj(x′)⟩ = ⟨ϕj−1(x), ϕj−1(x′)⟩ = kj−1(x, x′).
If the norms

∥∥zj(x)
∥∥ concentrate, we then obtain kj(x, x′) = κ(. . . κ(⟨x, x′⟩) . . . ) (Daniely et al.,

2016). Depth is then useless, as kj has the same expressivity as k1 (Bietti and Bach, 2021).
When Cj ̸= Id, Gaussian rainbow kernels kj cannot be written as a cascade of elementary
kernels, but their square roots ϕj are a cascade of kernel feature maps φℓ = φ̃ℓC

1/2
ℓ for ℓ ≤ j.

The white random feature maps φ̃j have simple expressions as they arise from the homogeneous
dot-product kernel:

⟨φ̃j(z), φ̃j(z′)⟩Hj
= ∥z∥ ∥z′∥κ

(
⟨z, z′⟩
∥z∥ ∥z′∥

)
.

105



Chapter 7. The Rainbow Model of Deep Networks

This dot-product kernel implies that φ̃j is equivariant to rotations, and hence symmetry prop-
erties on the network ϕj as we will see in Section 7.2.3.

Finite-width rainbow networks. We now go back to the general case of arbitrary weight
distributions πj and introduce finite-width rainbow networks, which are random approximations
of infinite-width rainbow networks. Each weight matrix Wj is iteratively defined conditionally
on the previous weight matrices (Wℓ)ℓ<j . Its conditional probability distribution is defined in
order to preserve the key induction property of the rainbow convergence of the activations ϕ̂j .
Informally, it states that Âj ϕ̂j ≈ ϕj where Âj : Rdj → Hj is an alignment rotation. Finite-width
rainbow networks impose sufficient conditions to obtain this convergence at all layers, as we will
show below.

The first layer W1 is defined as in Section 7.2.1. Suppose that W1, . . . ,Wj−1 have been
defined. By induction, there exists an alignment rotation Âj−1 : Rdj−1 → Hj−1, defined by

Âj−1 = arg min
Â∈O(dj−1)

Ex
[
∥Â ϕ̂j−1(x)− ϕj−1(x)∥2

Hj−1

]
, (7.10)

such that Âj−1 ϕ̂j−1 ≈ ϕj−1. We wish to define Wj so that Âj ϕ̂j ≈ ϕj . This can be achieved
with a random feature approximation of φj composed with the alignment Âj−1. Consider a
(semi-infinite) random matrix W ′

j of dj i.i.d. rows in Hj−1 distributed according to πj :

W ′
j = (w′

ji)i≤dj
with i.i.d. w′

ji ∼ πj .

We then have Âj ρW ′
j ≈ φj for a suitably defined Âj , as in Section 7.2.1. Combining the two

approximations, we obtain

Âj ρW
′
j Âj−1 ϕ̂j−1 ≈ φj ϕj−1 = ϕj .

We thus define the weight at layer j with the aligned random features

Wj = W ′
j Âj−1.

It is a random weight matrix of size dj × dj−1, with rotated rows ÂT
j−1w

′
ji that are independent

and identically distributed when conditioned on the previous layers (Wℓ)ℓ<j . This inverse rota-
tion of random weights cancels the rotation introduced by the random features at the previous
layer, and implies a convergence of the random features cascade as we will prove below. This
qualitative derivation motivates the following definition of finite-width rainbow networks.

Definition 7.2. A finite-width rainbow network approximation of an infinite-width rainbow
network with weight distributions (πj)j≤J is defined for each j ≤ J by a random weight matrix
Wj of size dj × dj−1 which satisfies

Wj = (ÂTj−1w
′
ji)i≤dj

with i.i.d. w′
ji ∼ πj , (7.11)

where Âj−1 is the rotation defined in (7.10). The last layer weight vector is θ̂ = ÂT
J θ where θ is

the last layer weight of the infinite-width rainbow network.

The random weights Wj of a finite rainbow networks are defined as rotations and finite-
dimensional projections of the dj infinite-dimensional random vectors w′

ji, which are indepen-
dent. The dependence on the previous layers (Wℓ)ℓ<j is captured by the rotation Âj−1. The
rows of Wj are thus not independent, but they are independent when conditioned on (Wℓ)ℓ<j .

106



Section 7.2. Rainbow networks

The rotation and projection of the random weights (7.11) implies a similar rotation and pro-
jection on the moments of Wj conditionally on (Wℓ)ℓ<j . In particular, the conditional covariance
of Wj is thus

Ĉj = ÂT
j−1CjÂj−1. (7.12)

Wj can then be factorized as the product of a white random feature matrix W̃j with the covari-
ance square root:

Wj = W̃j Ĉ
1/2
j with i.i.d. w̃ji conditionally on (Wℓ)ℓ<j .

Note that the distribution of the white random features w̃ji depends in general on Âj−1. How-
ever, for Gaussian rainbow networks with πj = N (0, Cj), this dependence is limited to the
covariance Ĉj and W̃j = Gj is a Gaussian white matrix with i.i.d. normal entries that are
independent of the previous layer weights (Wℓ)ℓ<j :

Wj = Gj Ĉ
1/2
j with i.i.d. Gjik ∼ N (0, 1) . (7.13)

Finite-width Gaussian rainbow networks are approximation models of deep networks that
have been trained end-to-end by SGD on a supervised task. We will explain in Section 7.3
how each covariance Cj of the rainbow model can be estimated from the weights of one or
several trained networks. The precision of a Gaussian rainbow model is evaluated by sampling
new weights according to (7.13) and verifying that the resulting rainbow network has a similar
performance as the original trained networks.

Convergence to infinite-width networks. The heuristic derivation used to motivate Def-
inition 7.2 suggests that the weights rotation (7.11) guarantees the convergence of finite-width
rainbow networks towards their infinite-width counterpart. This is proved by the next theorem,
which builds on Theorem 7.1.

Theorem 7.2. Assume that Ex[∥x∥2] < +∞ and ρ is Lipschitz. Let (ϕj)j≤J be the ac-
tivation layer of an infinite-width rainbow network with distributions (πj)j≤J with bounded
second- and fourth-order moments, and an output f(x). Let (ϕ̂j)j≤J be the activation layers
of sizes (dj)j≤J of a finite-width rainbow network approximation, with an output f̂(x). Let
kj(x, x′) = ⟨ϕj(x), ϕj(x′)⟩ and k̂j(x, x′) = ⟨ϕ̂j(x), ϕ̂j(x′)⟩. Suppose that the sorted eigenvalues of
Ex[ϕj(x)ϕj(x)T] satisfy λj,m = O(m−αj ) with αj > 1. Then there exists c > 0 which does not
depend upon (dj)j≤J such that

EW1,...,Wj ,x,x
′

[
|k̂j(x, x′)− kj(x, x′)|2

]
≤ c

(
εj−1 + d

−1/2
j

)2

EW1,...,Wj ,x

[
∥Âj ϕ̂j(x)− ϕj(x)∥2

Hj

]
≤ c ε2

j

EW1,...,WJ ,x

[
|f̂(x)− f(x)|2

]
≤ c ∥f∥2HJ

ε2
J ,

where

εj =
j∑
ℓ=1

d
−ηℓ/2
ℓ with ηℓ = αℓ − 1

2(2αℓ − 1) > 0.

The proof is given in Appendix F.2. It applies iteratively Theorem 7.1 at each layer. As
in Theorem 7.1, the constant c is explicit and depends polynomially on the constants involved
in the hypotheses. For Gaussian weight distributions πj = N (0, Cj), the theorem only requires
that ∥Cj∥∞ is finite for each j ≤ J , where ∥·∥∞ is the operator norm (i.e., the largest singular
value).

107



Chapter 7. The Rainbow Model of Deep Networks

This theorem proves that at each layer, a finite-width rainbow network has an empirical
kernel k̂j which converges in mean-square to the deterministic kernel kj of the infinite-width
network, when all widths dℓ grow to infinity. Similarly, after alignment, each activation layer ϕ̂j
also converges to the activation layer ϕj of the infinite-width network. Finally, the finite-width
rainbow output f̂ converges to a function f in the RKHS HJ of the infinite-width network. This
demonstrates that all finite-width rainbow networks implement the same deterministic function
when they are wide enough. Note that any relative scaling between the layer widths is allowed,
as the error decomposes as a sum over layer contributions: each layer converges independently.
In particular, this includes the proportional case when the widths are defined as dj = s d0

j and
the scaling factor s grows to infinity.

The asymptotic existence of rotations between any two trained networks has implications
for the geometry of the loss landscape: if the weight distributions πj are unimodal, which is the
case for Gaussian distributions, alignment rotations can be used to build continuous paths in
parameter space between the two rainbow network weights without encountering loss barriers
(Freeman and Bruna, 2017; Draxler et al., 2018; Garipov et al., 2018). This could not be done
with permutations (Entezari et al., 2022; Benzing et al., 2022; Ainsworth et al., 2022), which
are discrete symmetries. It proves that under the rainbow assumptions, the loss landscape of
wide-enough networks has a single connected basin, as opposed to many isolated ones.

Theorem 7.2 is a law-of-large-numbers result, which is different but complementary to the
central-limit neural network Gaussian process convergence of Neal (1996); Williams (1996); Lee
et al. (2018); Matthews et al. (2018). These works state that at initialization, random finite-
dimensional projections of the activations ϕ̂j converge to a random Gaussian process described
by a kernel. In contrast, we show in a wider setting that the activations ϕ̂j converge to a
deterministic feature vector ϕj described by a more general kernel, up to a random rotation.
Note that this requires no assumptions of Gaussianity on the weights or the activations. The
convergence of the kernels is similar to the results of Daniely et al. (2016), but here generalized
to non-compositional kernels obtained with arbitrary weight distributions πj .

Theorem 7.2 can be considered as a multi-layer but static extension of the mean-field limit of
Chizat and Bach (2018); Mei et al. (2018); Rotskoff and Vanden-Eijnden (2018); Sirignano and
Spiliopoulos (2020). The limit is the infinite-width rainbow networks of Definition 7.1. It differs
from other multi-layer extensions (Sirignano and Spiliopoulos, 2022; E and Wojtowytsch, 2020;
Nguyen and Pham, 2020; Chen et al., 2022c; Yang and Hu, 2021) because Definition 7.2 includes
the alignment rotations Âj . We shall not model the optimization dynamics of rainbow networks
when trained with SGD, but we will make several empirical observations in Section 7.3.

Finally, Theorem 7.2 shows that the two assumptions of Definition 7.2, namely that layer
dependencies are reduced to alignment rotations and that neuron weights are conditionally
i.i.d. at each layer, imply the convergence up to rotations of network activations at each layer.
We will verify numerically this convergence in Section 7.3 for several network architectures on
image classification tasks, corroborating the results of Raghu et al. (2017) and Kornblith et al.
(2019). It does not mean that the assumptions of Definition 7.2 are valid, and verifying them is
challenging in high-dimensions beyond the Gaussian case where the weight distributions πj are
not known. We however note that the rainbow assumptions are satisfied at initialization with
πj = N (0, Id), as eq. (7.12) implies that Ĉj = Id and thus that the weight matrices Wj = Gj
are independent. Theorem 7.2 therefore applies at initialization. It is an open problem to
show whether the existence of alignment rotations Âj is preserved during training by SGD, or
whether dependencies between layer weights are indeed reduced to these rotations. Regarding
(conditional) independence between neuron weights, Sirignano and Spiliopoulos (2020) show
that in one-hidden-layer networks, neuron weights remain independent at non-zero but finite
training times in the infinite-width limit. In contrast, a result of Rotskoff and Vanden-Eijnden
(2018) suggests that this is no longer true at diverging training times, as SGD leads to an
approximation of the target function f with a better rate than Monte-Carlo. Neuron weights at

108



Section 7.2. Rainbow networks

a given layer remain however (conditionally) exchangeable due to the permutation equivariance
of the initialization and SGD, and therefore have the same marginal distribution. Theorem 7.2
can be extended to dependent neuron weights w′

ji, e.g., with the more general assumption that
their empirical distribution d−1

j

∑dj

i=1 δw′
ji

converges weakly to πj when the width dj increases.

7.2.3 Symmetries and convolutional rainbow networks

The previous sections have defined fully-connected rainbow networks. In applications, prior
information on the learning problem is often available. Practitioners then design more con-
strained architectures which implement inductive biases. Convolutional networks are important
examples, which enforce two fundamental properties: equivariance to translations, achieved with
weight sharing, and local receptive fields, achieved with small filter supports (LeCun et al., 1989a;
LeCun and Bengio, 1995). We first explain how equivariance to general groups may be achieved
in rainbow networks. We then generalize rainbow networks to convolutional architectures.

Equivariant rainbow networks. Prior information may be available in the form of a sym-
metry group under which the desired output is invariant. For instance, translating an image
may not change its class. We now explain how to enforce symmetry properties in rainbow net-
works by imposing these symmetries on the weight distributions πj rather than on the values of
individual neuron weights wji. For Gaussian rainbow networks, we shall see that it is sufficient
to impose that the desired symmetries commute with the weight covariances Cj .

Formally, let us consider G a subgroup of the orthogonal group O(d0), under whose action
the target function f⋆ is invariant: f⋆(gx) = f⋆(x) for all g ∈ G. Such invariance is gener-
ally achieved progressively through the network layers. In a convolutional network, translation
invariance is built up by successive pooling operations. The output f(x) is invariant but in-
termediate activations ϕj(x) are equivariant to the group action. Equivariance is more general
than invariance. The activation map ϕ is equivariant if there is a representation σ of G such that
ϕ(gx) = σ(g)ϕ(x), where σ(g) is an invertible linear operator such that σ(gg′) = σ(g)σ(g′) for
all g, g′ ∈ G. An invariant function f(x) = ⟨θ, ϕ(x)⟩ is obtained from an equivariant activation
map ϕ with a fixed point θ of the representation σ. Indeed, if σ(g)θ = θ for all g ∈ G, then
f(gx) = f(x).

We say that σ is an orthogonal representation of G if σ(g) is an orthogonal operator for
all g. When σ is orthogonal, we say that ϕ is orthogonally equivariant. We also say that a
distribution π is invariant under the action of σ if σ(g)Tw ∼ π for all g ∈ G, where w ∼ π. We
say that a linear operator C commutes with σ if it commutes with σ(g) for all g ∈ G. Finally,
a kernel k is invariant to the action of G if k(gx, gx′) = k(x, x′). The following theorem proves
that rainbow kernels are invariant to a group action if each weight distribution πj is invariant
to the group representation on the activation layer ϕj−1, which inductively defines orthogonal
representations σj at each layer.

Theorem 7.3. Let G be a subgroup of the orthogonal group O(d0). If all weight distribution
(πj)j≤J are invariant to the inductively defined orthogonal representation of G on their input
activations, then activations (ϕj)j≤J are orthogonally equivariant to the action of G, and the
rainbow kernels (kj)j≤J are invariant to the action of G. For Gaussian rainbow networks,
this is equivalent to imposing that all weight covariances (Cj)j≤J commute with the orthogonal
representation of G on their input activations.

The proof is in Appendix F.3. The result is proved by induction. If ϕj is orthogonally
equivariant and πj+1 is invariant to its representation σj , then the next-layer activations are
equivariant. Indeed, for w ∼ πj+1,

ρ
(〈
ϕj(gx), w

〉)
= ρ

(〈
σj(g)ϕj(x), w

〉)
= ρ

(〈
ϕj(x), σj(g)Tw

〉)
∼ ρ

(〈
ϕj(x), w

〉)
,

109



Chapter 7. The Rainbow Model of Deep Networks

which defines an orthogonal representation σj+1 on ϕj+1. Note that any distribution πj which
is invariant to an orthogonal representation σj necessarily has a covariance Cj which commutes
with σj . The converse is true when πj is Gaussian, which shows that Gaussian rainbow networks
have a maximal number of symmetries among rainbow networks with weight covariances Cj .

Together with Theorem 7.2, Theorem 7.3 implies that finite-width rainbow networks can
implement functions f̂ which are approximately invariant, in the sense that the mean-square
error EW1,...,WJ ,x

[|f̂(gx)− f̂(x)|2] vanishes when the layer widths grow to infinity, with the same
convergence rate as in Theorem 7.2. The activations ϕ̂j are approximately equivariant in a
similar sense. This gives a relatively easy procedure to define neural networks having predefined
symmetries. The usual approach is to impose that each weight matrix Wj is permutation-
equivariant to the representation of the group action on each activation layer (Cohen and Welling,
2016; Kondor and Trivedi, 2018). This means that Wj is a group convolution operator and hence
that the rows of Wj are invariant by this group action. This property requires weight-sharing or
synchronization between weights of different neurons, which has been criticized as biologically
implausible (Bartunov et al., 2018; Ott et al., 2020; Pogodin et al., 2021). On the contrary,
rainbow networks implement symmetries by imposing that the neuron weights are independent
samples of a distribution which is invariant under the group action. The synchronization is thus
only at a global, statistical level. It also provides representations with the orthogonal group,
which is much richer than the permutation group, and hence increases expressivity. It comes
however at the cost of an approximate equivariance for finite layer widths.

Convolutional rainbow networks. Translation-equivariance could be achieved in a fully-
connected architecture by imposing stationary weight distributions πj . For Gaussian rainbow
networks, this means that weight covariances Cj commute with translations, and are thus con-
volution operators. However, the weights then have a stationary Gaussian distribution and
therefore cannot have a localized support. This localization has to be enforced with the archi-
tecture, by constraining the connectivity of the network. We generalize the rainbow construction
to convolutional architectures, without necessarily imposing that the weights are Gaussian. It
is achieved by a factorization of the weight layers, so that identical random features embeddings
are computed for each patch of the input. As a result, all previous theoretical results carry over
to the convolutional setting.

In convolutional networks, each Wj is a convolution operator which enforces both transla-
tion equivariance and locality. Typical architectures impose that convolutional filters have a
predefined support with an output which may be subsampled. This architecture prior can be
written as a factorization of the weight matrix:

Wj = Lj Pj ,

where Pj is a prior convolutional operator which only acts along space and is replicated over
channels (also known as depthwise convolution), while Lj is a learned pointwise (or 1 × 1)
convolution which only acts along channels and is replicated over space. This factorization is
always possible, and should not be confused with depthwise-separable convolutions (Sifre and
Mallat, 2013; Chollet, 2017).

Let us consider a convolutional operator Wj having a spatial support of size s2
j , with dj−1

input channels and dj output channels. The prior operator Pj then extracts dj−1 patches of size
sj×sj at each spatial location and reshapes them as a channel vector of size d′

j−1 = dj−1s
2
j . Pj is

fixed during training and represents the architectural constraints imposed by the convolutional
layer. The learned operator Lj is then a 1 × 1 convolutional operator, applied at each spatial
location across d′

j−1 input channels to compute dj output channels. This factorization reshapes
the convolution kernel of Wj of size dj × dj−1× sj × sj into a 1× 1 convolution Lj with a kernel
of size dj × d′

j−1 × 1 × 1. Lj can then be thought as a fully-connected operator over channels
that is applied at every spatial location.

110



Section 7.3. Numerical results

The choice of the prior operator Pj directly influences the learned operator Lj and therefore
the weight distributions πj . Pj may thus be designed to achieve certain desired properties on
πj . For instance, the operator Pj may also specify predefined filters, such as wavelets in learned
scattering networks introduced in Chapters 5 and 6. In a learned scattering network, Pj com-
putes spatial convolutions and subsamplings, with q wavelet filters having different orientations
and frequency selectivity. The learned convolution Lj then has d′

j−1 = dj−1q input channels.
This is further detailed in Appendix F.4, which explains that one can reduce the size of Lj by
imposing that it commutes with Pj , which amounts to factorizing Wj = Pj Lj instead.

The rainbow construction of Section 7.2.2 has a straightforward extension to the convolu-
tional case, with a few adaptations. The activations layers ϕ̂j−1 should be replaced with Pjϕ̂j−1
and Wj with Lj , where it is understood that it represents a fully-connected matrix acting along
channels and replicated pointwise across space. Similarly, the weight covariances Cj and its
square roots C1/2

j are 1× 1 convolutional operators which act along the channels of Pjϕ̂j−1, or
equivalently are applied over patches of ϕ̂j−1. Finally, the alignments Âj−1 are 1 × 1 convo-
lutions which therefore commute with Pj as they act along different axes. One can thus still
define Ĉj = ÂT

j−1CjÂj−1. Convolutional rainbow networks also satisfy Theorems 7.1 to 7.3 with
appropriate modifications.

We note that the expression of the rainbow kernel is different for convolutional architectures.
Equation (7.7) becomes

kj(x, x′) =
∑
u

Ew∼πj

[
ρ
(〈
Pjϕj−1(x)[u], w

〉)
ρ(⟨Pjϕj−1(x′)[u], w⟩)

]
,

where Pjϕj−1(x)[u] is a patch of ϕj−1(x) centered at u and whose spatial size is determined by
Pj . In the particular case where πj is Gaussian with a covariance Cj , the dot-product kernel in
eq. (7.9) becomes

kj(x, x′) =
∑
u

∥zu(x)∥ ∥zu(x′)∥κ
(
⟨zu(x), zu(x′)⟩
∥zu(x)∥ ∥zu(x′)∥

)
with zu(x) = C

1/2
j Pjϕj−1(x)[u],

The sum on the spatial location u averages the local dot-product kernel values and defines a
translation-invariant kernel. Observe that it differs from the fully-connected rainbow kernel (7.9)
with weight covariances C ′

j = PT
j CjPj , which is a global dot-product kernel with a stationary

covariance. Indeed, the corresponding fully-connected rainbow networks have filters with global
spatial support, while convolutional rainbow networks have localized filters. The covariance
structure of depthwise convolutional filters has been investigated by Trockman et al. (2023).

The architecture plays an important role by modifying the kernel and hence the RKHS HJ
of the output (Daniely et al., 2016). Hierarchical convolutional kernels have been studied by
Mairal et al. (2014); Anselmi et al. (2015); Bietti (2019). Bietti and Mairal (2019) have proved
that functions in HJ are stable to the action of diffeomorphisms (Mallat, 2012) when Pj also
include a local averaging before the patch extraction. However, the generalization properties of
such kernels are not well understood, even when Cj = Id. In that case, deep kernels with J > 1
hidden layers are not equivalent to shallow kernels with J = 1 (Bietti and Bach, 2021).

7.3 Numerical results
In this section, we validate the rainbow model on several network architectures trained on
image classification tasks and make several observations on the properties of the learned weight
covariances Cj . As our first main result, we partially validate the rainbow model by showing
that network activations converge up to rotations when the layer widths increase (Section 7.3.1).
We then show in Section 7.3.2 that the empirical weight covariances Ĉj converge up to rotations
when the layer widths increase. Furthermore, the weight covariances are typically low-rank and

111



Chapter 7. The Rainbow Model of Deep Networks

can be partially specified from the input activation covariances. Our second main result, in
Section 7.3.3, is that the Gaussian rainbow model applies to scattering networks trained on the
CIFAR-10 dataset. Generating new weights from the estimated covariances Cj leads to similar
performance than SGD training when the network width is large enough. We further show that
SGD only updates the weight covariance during training while preserving the white Gaussian
initialization. It suggests a possible explanation for the Gaussian rainbow model, though the
Gaussian assumption seems too strong to hold for more complex learning tasks for network
widths used in practice.

7.3.1 Convergence of activations in the infinite-width limit

We show that trained networks with different initializations converge to the same function when
their width increases. More precisely, we show the stronger property that at each layer, their
activations converge after alignment to a fixed deterministic limit when the width increases.
Trained networks thus share the convergence properties of rainbow networks (Theorem 7.2).
Section 7.3.3 will further show that scattering networks trained on CIFAR-10 indeed approximate
Gaussian rainbow networks. In this case, the limit function is thus in the Gaussian rainbow
RKHS (Definition 7.1).

Architectures and tasks. In this chapter, we consider two architectures, learned scattering
networks and ResNets (He et al., 2016), trained on two image classification datasets, CIFAR-10
(Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015).

Scattering networks have fixed spatial filters, so that their learned weights only operate
across channels. This structure reduces the learning problem to channel matrices and plays a
major role in the (conditional) Gaussianity of the learned weights, as we will see. The networks
have J hidden layers, with J = 7 on CIFAR-10 and J = 10 on ImageNet. Each layer can
be written Wj = Lj Pj where Lj is a learned 1 × 1 convolution, and Pj is a convolution with
predefined complex wavelets. Pj convolves each of its dj−1 input channels with 5 different
wavelet filters (1 low-frequency filter and 4 oriented high-frequency wavelets), thus generating
d′
j−1 = 5dj−1 channels. We shall still denote Lj with Wj to keep the notations of Section 7.2.2.

The non-linearity ρ is a complex modulus with skip-connection, followed by a standardization
(as computed by a batch-normalization). This architecture is slightly adapted from Chapter 6
and is further detailed in Appendix F.4.

Our scattering network reaches an accuracy of 92% on the CIFAR-10 test set. As a compari-
son, ResNet-20 (He et al., 2016) achieves 91% accuracy, while most linear classification methods
based on hierarchical convolutional kernels such as the scattering transform or the neural tan-
gent kernel reach less than 83% accuracy (Mairal et al., 2014; Oyallon and Mallat, 2015; Li et al.,
2019). On the ImageNet dataset (Russakovsky et al., 2015), learned scattering networks achieve
89% top-5 accuracy, which is also the performance of ResNet-18 with single-crop testing.

We have made minor adjustments to the ResNet architecture for ease of analysis such as
removing bias parameters (at no cost in performance), as explained in Appendix F.4. It can still
be written Wj = Lj Pj where Pj is a patch extraction operator as explained in Section 7.2.3,
and the non-linearity ρ is a ReLU.

Convergence of activations. We train several networks with a range of widths by simul-
taneously scaling the widths of all layers with a multiplicative factor s varying over a range of
26 = 64. We show that their activations ϕ̂j converge after alignment to a fixed deterministic
limit ϕj when the width increases. The feature map ϕj is approximated with the activations of
a large network with s = 23.

We begin illustrating the behavior of activation spectra as a function of our width-scaling
parameter s, for seven-hidden-layer trained scattering networks on CIFAR-10. In the left panel

112



Section 7.3. Numerical results

100 101 102 103 104

φ̂j KPCA rank m

10−4

10−3

10−2

10−1

100

φ̂
j

K
P

C
A

ei
ge

n
va

lu
e

m−1

s = 2−3 s = 20 s = 23

j = 4

100 101 102 103 104

φj KPCA rank m

10−4

10−3

10−2

10−1

100

φ
j

K
P

C
A

ei
ge

n
va

lu
e

m−1

j = 1 j = 4 j = 7

Figure 7.2: Convergence of spectra of activations ϕ̂j of finite-width trained scattering networks towards
the feature vector ϕj. The figure shows the covariance spectra of activations ϕ̂j for a given layer j = 4
and various width scaling s ( left) and of the feature vector ϕj for the seven hidden layers j ∈ {1, . . . , 7}
( right). The covariance spectrum is a power law of index close to −1.

of Figure 7.2, we show how activation spectra vary as a function of s for the layer j = 4 which
has a behavior representative of all other layers. The spectra are obtained by doing a PCA of
the activations ϕ̂j(x), which corresponds to a KPCA of the input x with respect to the empirical
kernel k̂j . The ϕ̂j covariance spectra for networks of various widths overlap at lower KPCA ranks,
suggesting well-estimated components, while the variance then decays rapidly at higher ranks.
Wider networks thus estimate a larger number of principal components of the feature vector ϕj .
For the first layer j = 1, this recovers the random feature KPCA results of Sriperumbudur and
Sterge (2022), but this convergence is observed at all layers. The overall trend as a function
of s illustrates the infinite-width convergence. We also note that, as the width increases, the
activation spectrum becomes closer to a power-law distribution with a slope of −1. The right
panel of the figure shows that this type of decay with KPCA rank m is observed at all layers
of the infinite-width network (ϕj)j≤J . The power-law spectral properties of random feature
activations have been studied theoretically by Scetbon and Harchaoui (2021), and in connection
with the scaling laws observed in large language models (Kaplan et al., 2020) by Maloney et al.
(2022). Note that here we do not scale the dataset size nor training hyperparameters such as
the learning rate or batch size with the network width, and a different experimental setup would
likely influence the infinite-width limit (Yang et al., 2022; Hoffmann et al., 2022).

We now directly measure the convergence of activations by evaluating the mean-square dis-
tance after alignment Ex[∥Âj ϕ̂j(x)− ϕj(x)∥2]. The left panel of Figure 7.3 shows that it does
indeed decrease when the network width increases, for all layers j. Despite the theoretical con-
vergence rate of Theorem 7.2 vanishing when the activation spectrum exponent αj approaches
1, in practice we still observe convergence. Alignment rotations Âj are computed on the train
set while the mean-square distance is computed on the test set, so this decrease is not a result
of overfitting. It demonstrates that scattering networks ϕ̂j approximate the same deterministic
network ϕj no matter their initialization or width when it is large enough. The right panel of the
figure evaluates this same convergence on a ResNet-18 trained on ImageNet. The mean-square
distance after alignment decreases for most layers when the width increases. We note that the
rate of decrease slows down for the last few layers. For these layers, the relative error after
alignment is of the order of unity, indicating that the convergence is not observed at the largest
width considered here. The overall trend however suggests that further increasing the width
would reduce the error after alignment. The observations that networks trained from different
initializations have similar activations had already been made by Raghu et al. (2017). Kornblith
et al. (2019) showed that similarity increases with width, but with a weaker similarity measure.
Rainbow networks, which we will show can approximate scattering networks, explain the source

113



Chapter 7. The Rainbow Model of Deep Networks

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

Scattering-7 on CIFAR-10

2−3 2−2 2−1 20 21 22

Width scaling

10−1

100

M
ea

n
-s

q
u

ar
e

al
ig

n
m

en
t

er
ro

r

ResNet-18 on ImageNet

First

Last

L
ay

er
j

Figure 7.3: Convergence of activations ϕ̂j of finite-width networks towards the corresponding feature
vector ϕj, for scattering networks trained on CIFAR-10 ( left) and ResNet trained on ImageNet ( right).
Both panels show the relative mean squared error Ex[∥Âj ϕ̂j(x)− ϕj(x)∥2]/Ex[∥ϕj(x)∥2] between aligned
activations Âj ϕ̂j and the feature vector ϕj. The error decreases as a function of the width scaling s for
all layers for the scattering network, and all but the last few layers for ResNet.

of these observations as a consequence of the law of large numbers applied to the random weight
matrices with conditionally i.i.d. rows.

7.3.2 Properties of learned weight covariances

We have established the convergence (up to rotations) of the activations ϕ̂j in the infinite-width
limit. Under the rainbow model, the weight matrices Wj are random and thus cannot converge.
However, they define estimates C̃j of the infinite-dimensional weight covariances Cj . We show
that these estimates C̃j converge to the true covariances Cj when the width increases. We
then demonstrate that the covariances Cj are effectively low-rank, and that their eigenspaces
can be efficiently approximated by taking into account unsupervised information. The weight
covariances are thus of low complexity, in the sense that they can be described with a number
of parameters significantly smaller than their original size.

Estimation of the weight covariances. We estimate the weight covariances Cj from the
learned weights of a deep network. This network has weight matrices Wj of size dj × dj−1 that
have been trained end-to-end by SGD. The natural empirical estimate of the weight covariance
Ĉj of Wj is

Ĉj ≈ d
−1
j WT

j Wj . (7.14)

It computes Ĉj from dj samples, which are conditionally i.i.d. under the rainbow model hypoth-
esis. Although the number dj of samples is large, their dimension dj−1 is also large. For many
architectures dj/dj−1 remains nearly constant and we shall consider in this section that dj = s d0

j ,
so that when the scaling factor s grows to infinity dj/dj−1 converges to a non-zero finite limit.
This creates challenges in the estimation of Ĉj , as we now explain. We will see that the weight
variance is amplified during training. The learned covariance can thus be modeled Ĉj = Id +Ĉ ′

j ,
where the magnitude of Ĉ ′

j keeps increasing during training. When the training time goes to
infinity, the initialization Id becomes negligible with respect to Ĉ ′

j . However, at finite training
time, only the eigenvectors of C ′

j with sufficiently high eigenvalues have been learned consis-
tently, and Ĉ ′

j is thus effectively low-rank. Ĉj is then a spiked covariance matrix (Johnstone,
2001). A large statistical literature has addressed the estimation of spiked covariances when the
number of parameters dj−1 and the number of observations dj increases, with a constant ratio
dj/dj−1 (Baik et al., 2005; El Karoui, 2008a). Consistent estimators of the eigenvalues of Ĉj can

114



Section 7.3. Numerical results

be computed, but not of its eigenvectors, unless we have other prior information such as sparsity
of the covariance entries (El Karoui, 2008b) or its eigenvectors (Ma, 2013). In our setting, we
shall see that prior information on eigenspaces of Ĉj is available from the eigenspaces of the
input activation covariances. We use the empirical estimator (7.14) for simplicity, but it is not
optimal. Minimax-optimal estimators are obtained by shrinking empirical eigenvalues (Donoho
et al., 2018).

We would like to estimate the infinite-dimensional covariances Cj rather than finite-dimensional
projections Ĉj . Since Ĉj = ÂT

j−1CjÂj−1, an empirical estimate of Cj is given by

C̃j = Âj−1ĈjÂ
T
j−1. (7.15)

To compute the alignment rotation Âj−1 with eq. (7.4), we must estimate the infinite-width
rainbow activations ϕj−1. As above, we approximate ϕj−1 with the activations ϕ̂j−1 of a finite
but sufficiently large network, relying on the activation convergence demonstrated in the previous
section. We then estimate Cj with eq. (7.15) and Ĉj ≈ d−1

j WT
j Wj . We further reduce the

estimation error of Cj by training several networks of size (dj)j≤J , and by averaging the empirical
estimators (7.15). Note that averaging directly the estimates (7.14) of Ĉj with different networks
would not lead to an estimate of Cj , because the covariances Ĉj are represented in different bases
which must be aligned. The final layer weights θ are also similarly computed with an empirical
estimator from the trained weights θ̂.

Convergence of weight covariances. We now show numerically that the weight covariance
estimates C̃j (7.15) converge to the true covariances Cj . This performs a partial validation of the
rainbow assumptions of Definition 7.2, as it verifies the rotation of the second-order moments
of πj (7.12) but not higher-moments nor independence between neurons. Due to computational
limitations, we perform this verification on three-hidden-layer scattering networks trained on
CIFAR-10, for which we can scale both the number of networks N we can average over, and
their width s. The main computational bottleneck here is the singular value decomposition
of the cross-covariance matrix Ex[ϕj(x) ϕ̂j(x)T] to compute the alignment Âj , which requires
O(Ns3) time and O(Ns2) memory. These shallower networks reach a test accuracy of 84% at
large width.

We begin by showing that empirical covariance matrices C̃j estimated from the weights of
different networks share the same eigenspaces of large eigenvalues. To this end, we train N
networks of the same finite width (s = 1) and compare the covariances C̃j estimated from
these N networks as a function of N . As introduced above, the estimated covariances C̃j
are well modeled with a spiked-covariance model. The upper-left panel of Figure 7.4 indeed
shows that the covariance spectrum interpolates between an exponential decay at low ranks
(indicated by the dashed line, corresponding to the “spikes” resulting from training, as will be
shown in Section 7.3.3), and a Marchenko-Pastur tail at higher ranks (indicated by dotted lines,
corresponding to the initialization with identity covariance). Note that we show the eigenvalues
as a function of their rank rather than a spectral density in order to reveal the exponential decay
of the spike positions with rank, which was missed in previous works (Martin and Mahoney,
2021; Thamm et al., 2022). The exponential regime is present even in the covariance estimated
from a single network, indicating its stability across training runs, while the Marchenko-Pastur
tail becomes flatter as more samples are used to estimate the empirical covariance. Here, the
feature vector ϕj has been estimated with a scattering network of same width s = 1 for simplicity
of illustration.

As shown in the lower-left panel, only the exponential regime contributes to the classification
accuracy of the network: the neuron weights can be projected on the first principal components
of C̃j , which correspond to the learned spikes, without harming performance. The informative
component of the weights is thus much lower-dimensional (≈ 30) than the network width (128),

115



Chapter 7. The Rainbow Model of Deep Networks

1 50 100 150 200 250 300

C̃j PCA rank

10−1

100

101

102

C̃
j

P
C

A
ei

ge
n
va

lu
e

N = 1 network

N = 10 networks

N = 50 networks

1 50 100 150 200 250 300

C̃j PCA rank

10−1

100

101

102

C̃
j

P
C

A
ei

ge
n
va

lu
e

s = 2−3 s = 21

s = 25

1 50 100 150 200 250 300

C̃j PCA maximum rank

20%

40%

60%

80%

100%

C
IF

A
R

-1
0

T
op

-1
ac

cu
ra

cy

+5% offset

-5% offset

2−3 2−2 2−1 20 21 22 23 24

Width scaling s

10−1

100

C
j

es
ti

m
at

io
n

er
ro

r

j = 2

j = 3

Figure 7.4: The weight covariance estimate C̃j converges towards the infinite-dimensional covariance Cj

for a three-hidden-layer scattering network trained on CIFAR-10. The first three panels show the behavior
of the layer j = 2. Upper left: spectra of empirical weight covariances C̃j as a function of the network
sample size N showing the transition from an exponential decay (fitted by the dashed line for N = 1) to
the Marchenko-Pastur spectrum (fitted by the dotted lines). Lower left: test classification performance
on CIFAR-10 of the trained networks as a function of the maximum rank of its weight covariance C̃j.
Most of the performance is captured with the first eigenvectors of C̃j. The curves for different network
sample sizes N when estimating C̃j overlap and are offset for visual purposes. Upper right: spectrum of
empirical weight covariances C̃j as a function of the network width scaling s. The dashed line is a fit to
an exponential decay at low rank. Lower right: relative distance between empirical and true covariances
∥Ĉj − Cj∥∞/∥Cj∥∞, as a function of the width scaling s.

and this dimension appears to match the characteristic scale of the exponential decay of the co-
variance eigenvalues. The number N of trained networks used to compute C̃j has no appreciable
effect on the approximation accuracy, which again shows that the empirical covariance matrices
of all N networks share this common informative component. This presence of a low-dimensional
informative weight component is in agreement with the observation that the Hessian of the loss
at the end of training is dominated by a subset of its eigenvectors (LeCun et al., 1989b; Hassibi
and Stork, 1992). These Hessian eigenvectors could indeed be related to the weight covariance
eigenvectors. Similarly, the dichotomy in weight properties highlighted by our analysis could
indicate why the eigenvalue distribution of the loss Hessian separates into two distinct regimes
(Sagun et al., 2016, 2017; Papyan, 2019): the “bulk” (with small eigenvalues corresponding to
uninformative flat directions of the loss landscape) is related to the Marchenko-Pastur tail of our
weight covariance spectrum and the “top” (or spiked) components correspond to the exponential
regime found at the lowest ranks of the covariance spectrum.

We now demonstrate that the weight covariances C̃j converge to an infinite-dimensional
covariance operator Cj when the widths of the scattering networks increase. Here, the weight
covariances C̃j are estimated from the weights of N = 10 networks with the same width scaling
s, and we estimate Cj from the weights of N = 10 wide scattering networks with s = 25. We

116



Section 7.3. Numerical results

100 101 102 103

φj KPCA rank m

10−2

10−1

100

101

102

103

φ
j

K
P

C
A

ei
ge

n
va

lu
e

1 100 200 300 400 500
Cj PCA rank r

10−1

100

101

C
j

P
C

A
ei

ge
n
va

lu
e

100 101 102 103

φj KPCA rank m

10−2

10−1

100

101

102

103

φ
j

K
P

C
A

ei
ge

n
va

lu
e

1 100 200 300 400 500
Cj PCA rank r

10−1

100

101

C
j

P
C

A
ei

ge
n
va

lu
e

First

Last

L
ay

er
j

Scattering-11 (89% ImageNet Top-5 accuracy)

ResNet-18 (89% ImageNet Top-5 accuracy)

Figure 7.5: Covariance spectra of activations and weights of an ten-hidden-layer scattering network
( top) and ResNet-18 (bottom) trained on ImageNet. In both cases, activation spectra ( left) mainly
follow power-law distribution with index roughly −1. Weight spectra ( right) show a transition from
an exponential decay with a characteristic scale increasing with depth to the Marchenko-Pastur spectral
distribution. These behaviors are captured by the rainbow model. For visual purposes, activation and
weight spectra are offset by a factor depending on j. In addition, we do not show the first layer nor the
1× 1 convolutional residual branches in ResNet as they have different layer properties.

first illustrate this convergence on the spectrum of C̃j in the upper-right panel of Figure 7.2.
The entire spectrum of C̃j converges to a limiting spectrum which contains both the informative
exponential part resulting from training and the uninformative Marchenko-Pastur tail coming
from the initialization. The characteristic scale of the exponential regime grows with network
width but converges to a finite value as the width increases to infinity. We then confirm that
the estimated covariances C̃j indeed converge to the covariance Cj when the width increases in
the lower-right panel. The distance converges to zero as a power law of the width scaling. The
first layer j = 1 has a different convergence behavior (not shown) as its input dimension does
not increase with s.

In summary, in the context considered here, networks trained from different initializations
share the same informative weight subspaces (after alignment) described by the weight covari-
ances at each layer, and they converge to a deterministic limit when the width increases. The
following paragraphs then demonstrate several properties of the weight covariances.

Dimensionality reduction in deep networks. We now consider deeper networks and show
that they also learn low-rank covariances. Comparing the spectra of weights and activations
reveals the alternation between dimensionality reduction with the colored weight covariances Cj
and high-dimensional embeddings with the white random features which are captured in the
rainbow model. We do so with two architectures: a ten-hidden-layer scattering network and a
slightly modified ResNet-18 trained on ImageNet (specified in Appendix F.4), which both reach
89% top-5 test accuracy.

We show the spectra of covariances of activations ϕj in the left panels of Figure 7.5 and of

117



Chapter 7. The Rainbow Model of Deep Networks

the weight covariances Cj in the right panels. For both networks, we recover the trend that
activation spectra are close to power laws of slope −1 and the weight spectra show a transition
from a learned exponential regime to a decay consistent with the Marchenko-Pastur expectation,
which is almost absent for ResNet-18. Considering them in sequence, as a function of depth, the
input activations are thus high-dimensional (due to the power-law of index close to −1) while the
subsequent weights perform a dimensionality reduction using an exponential bottleneck with a
characteristic scale much smaller than the width. Next, the dimensionality is re-expanded with
the non-linearity, as the activations at the next layer again have a power-law covariance spectrum.
Considering the weight spectra, we observe that the effective exponential scale increases with
depth, from about 10 to 60 for both the scattering network and the ResNet. This increase of
dimensionality with depth is expected: in convolutional architectures, the weight covariances
Cj are only defined on small patches of activations ϕj−1 because of the prior operator Pj .
However, these patches correspond to a larger receptive field in the input image x as the depth
j increases. The rank of the covariances is thus to be compared with the size of this receptive
field. Deep convolutional networks thus implement a sequence of dimensionality contractions
(with the learned weight covariances) and expansions (with the white random features and non-
linearity). Without the expansion, the network would reduce the dimensionality of the data
exponentially fast with depth, thus severely limiting its ability to process information on larger
spatial scales (deeper layers), while without the contraction, its parameter count and learning
sample complexity would increase exponentially fast with depth. This contraction/expansion
strategy allows the network to maintain a balanced representation at each scale.

The successive increases and decreases in dimensionality due to the weights and non-linearity
across deep network layers have been observed by Recanatesi et al. (2019) with a different
dimensionality measure. The observation that weight matrices of trained networks are low-
rank has been made in several works which exploited it for model compression (Denil et al.,
2013; Denton et al., 2014; Yu et al., 2017), while the high-dimensional embedding property
of random feature maps is well-known via the connection to their kernel (Rahimi and Recht,
2007; Scetbon and Harchaoui, 2021). The rainbow model integrates these two properties. In
neuroscience, high-dimensional representations with power-law spectra have been measured in
the mouse visual cortex by Stringer et al. (2019). Such representations in deep networks have
been demonstrated to lead to increased predictive power of human fMRI cortical responses
(Elmoznino and Bonner, 2022) and generalization in self-supervised learning (Agrawal et al.,
2022).

Unsupervised approximations of weight covariances. The learning complexity of a rain-
bow network depends upon the number of parameters needed to specify the weight covariances
(Cj)j≤J to reach a given performance. After having shown that their informative subspace is of
dimension significantly lower than the network width, we now show that this subspace can be
efficiently approximated by taking into account unsupervised information.

We would like to define a representation of the weight covariances Cj which can be accurately
approximated with a limited number of parameters. We chose to represent the infinite-width
activations ϕj as KPCA feature vectors, whose uncentered covariances Ex[ϕj(x)ϕj(x)T] are di-
agonal. In that case, the weight covariances Cj for j > 1 are operators defined on Hj−1 = ℓ2(N).
It amounts to representing Cj relatively to the principal components of ϕj−1, or equivalently, the
kernel principal components of x with respect to kj−1. This defines unsupervised approximations
of the weight covariance Cj by considering its projection on these first principal components.
We now evaluate the quality of this approximation.

Here, we consider a seven-hidden-layer scattering network trained on CIFAR-10, and weight
covariances estimated from N = 50 same-width networks. The upper panels of Figure 7.6 shows
the amount of variance in Cj captured by the first m basis directions as a function of m, for
three different orthogonal bases. The speed of growth of this variance as a function of m defines

118



Section 7.3. Numerical results

0.0

0.2

0.4

0.6

0.8

1.0
E

x
p

la
in

ed
va

ri
an

ce
j = 2 j = 4 j = 6

0 100 200 300
Maximum rank

20%

40%

60%

80%

C
IF

A
R

-1
0

T
op

-1
ac

cu
ra

cy

0 500 1000
Maximum rank

0 1000 2000
Maximum rank

Cj PCA

φj−1 KPCA

Random basis

Figure 7.6: Unsupervised information defines low-dimensional approximations of the learned weight
covariances. Each column shows a different layer j = 2, 4, 6 of a seven-hidden-layer scattering network
trained on CIFAR-10. For each r, we consider projections of the network weights on the first r principal
components of the weight covariances (red), the kernel principal components of the input activations
(orange), or random orthogonal vectors (green). Top: weight variance explained by the first r basis
vectors as a function of r. Bottom: classification accuracy after projection of the j-th layer weights on
the first r basis vectors, as function of r.

the quality of the approximation: a faster growth indicates that the basis provides an efficient
low-dimensional approximation of the covariance. The PCA basis of Cj provides optimal such
approximations, but it is not known before supervised training. In contrast, the KPCA basis
is computed from the previous layer activations ϕj−1 without the supervision of class label
information. Figure 7.6 demonstrates that the ϕj−1 KPCA basis provides close to optimal
approximations of Cj . This approximation is more effective for earlier layers, indicating that
the supervised information becomes more important for the deeper layers. The lower panels of
Figure 7.6 show a similar phenomenon when measuring classification accuracy instead of weight
variance.

In summary, the learned weight matrices are low-rank, and a low-dimensional bottleneck can
be introduced without harming performance. Further, unsupervised information (in the form
of a KPCA) gives substantial prior information on this bottleneck: high-variance components
of the weights are correlated with high-variance components of the activations. This observa-
tion was indirectly made by Raghu et al. (2017), who showed that network activations can be
projected on stable subspaces, which are in fact aligned with the high-variance kernel principal
components. It demonstrates the importance of self-supervised learning within supervised learn-
ing tasks (Bengio, 2012), and corroborates the empirical success of self-supervised pre-training
for many supervised tasks. The effective number of parameters that need to be learned in a
supervised manner is thus much smaller than the total number of trainable parameters.

119



Chapter 7. The Rainbow Model of Deep Networks

r = 1

j = 2 j = 4 j = 6

r = 10

r = 100

Figure 7.7: Marginal distributions of the weights of N = 50 seven-hidden-layer scattering networks
trained on CIFAR-10. The weights at the j-th layer (wji)i≤dj

of the N networks are projected along the
r-th eigenvector of Cj and normalized by the square root of the corresponding eigenvalue. The distribution
of the Ndj projections (blue histograms) is approximately normal (red curves). Each column shows a
different layer j, and each row shows a different rank r.

7.3.3 Gaussian rainbow approximations

We now show that the Gaussian rainbow model applies to scattering networks trained on the
CIFAR-10 dataset, by exploiting the fixed wavelet spatial filters incorporated in the architec-
ture. The Gaussian assumption thus only applies to weights along channels. We make use of
the factorization Wj = Gj Ĉ

1/2
j (7.13) of trained weights, where Ĉj results from an estimation

of Cj from several trained networks. We first show that the distribution of Gj can be approxi-
mated with random matrices of i.i.d. normal coefficients. We then show that Gaussian rainbow
networks, which replace Gj with such a white Gaussian matrix, achieve similar classification
accuracy as trained networks when the width is large. Finally, we show that in the same con-
text, the SGD training dynamics of the weight matrices Wj are characterized by the evolution
of the weight covariances Ĉj only, while Gj remains close to its initial value. The Gaussian
approximation deteriorates at small widths or on more complex datasets, suggesting that its
validity regime is when the network width is large compared to the task complexity.

Comparison between trained weights and Gaussian matrices. We show that statistics
of trained weights are reasonably well approximated by the Gaussian rainbow model. To do
so, we train N = 50 seven-hidden-layer scattering networks and estimate weight covariances
(Cj)j≤J by averaging eq. (7.15) over the trained networks as explained in Section 7.3.2. We
then retrieve Gj = Wj Ĉ

−1/2
j with Ĉj = ÂT

j CjÂj as in eq. (7.12). Note that we use a single
covariance Cj to whiten the weights of all N networks: this will confirm that the covariances of
weights of different networks are indeed related through rotations, as was shown in Section 7.3.2
through the convergence of weight covariance estimates. The rainbow feature vectors (ϕj)j≤J
at each layer are approximated with the activations of one of the N networks.

As a first (partial) Gaussianity test, we compare marginal distributions of whitened weights
Gj with the expected normal distribution in Figure 7.7. We present results for a series of layers
(j = 2, 4, 6) across the network. Other layers present similar results, except for j = 1 which has
more significant deviations from Gaussianity (not shown), as its input dimension is constrained

120



Section 7.3. Numerical results

0.0

0.1

0.2

0.3

0.4

0.5

j = 2

0.0

0.1

0.2

0.3

0.4

j = 4

0.00

0.05

0.10

0.15

0.20

0.25

j = 6

Wj

MP

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0 10 20
0.0

0.1

0.2

0.3

0.4

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25
Gj

MP

Figure 7.8: Spectral density of empirical covariances of trained ( top) and whitened weights (bottom).
Eigenvalue outside the support of the Marchenko-Pastur distribution (shown in red) are indicated with
spikes of amplitude proportional to their bin count. After whitening, the number of outliers are respectively
2%, 4%, and 8% for the layers j = 2, 4, and 6.

by the data dimension. We shall however not focus on this first layer as we will see that it
can still be replaced by Gaussian realizations when generating new weights. The weights at
the j-th layer (wji)i≤dj

of the N networks are projected along the r-th eigenvector of Cj and
normalized by the square root of the corresponding eigenvalue. This global view shows that
specific one-dimensional marginals are reasonably well approximated by a normal distribution.
We purposefully remain not quantitative, as the goal is not to demonstrate that trained weights
are statistically indistinguishable from Gaussian realizations (which is false), but to argue that
the latter is an acceptable model for the former.

To go beyond one-dimensional marginals, we now compare in the bottom panels of Figure 7.8
the spectral density of the whitened weights Gj to the theoretical Marchenko-Pastur distribution
(Marčenko and Pastur, 1967), which describes the limiting spectral density of matrices with i.i.d.
normal entries. We note a good agreement for the earlier layers, which deteriorates for deeper
layers (as well as the first layer, not shown, which again has a different behavior). Importantly,
the proportion of eigenvalues outside the Marchenko-Pastur support is arguably negligible (<
10% at all layers), which is not the case for the non-whitened weights Wj (upper panels) where it
can be > 25% for j = 6. As observed by Martin and Mahoney (2021) and Thamm et al. (2022),
trained weights have non-Marchenko-Pastur spectral statistics. Our results show that these
deviations are primarily attributable to correlations introduced by the non-identity covariance
matrices Cj , as opposed to power-law distributions as hypothesized by Martin and Mahoney
(2021). We however note that due to the universality of the Marchenko-Pastur distribution,
even a perfect agreement is not sufficient to claim that trained networks have conditionally
Gaussian weights. It merely implies that the Gaussian rainbow model provides a satisfactory
description of a number of weight statistical properties. Despite the observed deviations from
Gaussianity at later layers, we now show that generating new Gaussian weights at all layers
simultaneously preserves most of the classification accuracy of the network.

Performance of Gaussian rainbow networks. While the above tests indicate some level of
validation that the whitened weights Gj are matrices with approximately i.i.d. normal entries, it
is not statistically feasible to demonstrate that this property is fully satisfied in high-dimensions.

121



Chapter 7. The Rainbow Model of Deep Networks

2−3 2−2 2−1 20 21 22

Width scaling

50%

60%

70%

80%

90%

C
IF

A
R

-1
0

T
op

-1
ac

cu
ra

cy
Trained

Rainbow + trained classifier

Rainbow

Figure 7.9: Performance of seven-hidden-layer scattering networks on CIFAR-10 as a function of
network width for a trained network (blue), its rainbow network approximation with and without classifier
retraining (red solid and dashed). The larger the width, the better the sampled rainbow model approximates
the original network.

We thus sample network weights from the Gaussian rainbow model and verify that most of the
performance can be recovered. This is done with the procedure described in Definition 7.2,
using the covariances Cj , rainbow activations ϕj and final layer weights θ here estimated from a
single trained network (having shown in Sections 7.3.1 and 7.3.2 that all networks define similar
rainbow parameters if they are wide enough). New weights Wj are sampled iteratively starting
from the first layer with a covariance Ĉj = ÂT

j−1CjÂj−1, after computing the alignment rotation
Âj−1 between the activations ϕ̂j−1(x) of the partially sampled network and the activations
ϕj−1(x) of the trained network. The alignment rotations are computed using the CIFAR-10
train set, while network accuracy is evaluated on the test set, so that the measured performance
is not a result of overfitting.

We perform this test using a series of seven-hidden-layer scattering networks trained on
CIFAR-10 with various width scalings. We present results in Figure 7.9 for two sets of Gaussian
rainbow networks: a first set for which both the convolutional layers and the final layer are
sampled from the rainbow model (which corresponds to aligning the classifier of the trained
model to the sampled activations ϕ̂J(x)), and another set for which we retrain the classifier after
sampling the convolutional layers (which preserves the Gaussian rainbow RKHS). We observe
that the larger the network, the better it can be approximated by a Gaussian rainbow model. At
the largest width considered here, the Gaussian rainbow network achieves 85% accuracy and 89%
with a retrained classifier, and recovers most of the performance of the trained network which
reaches 92% accuracy. This performance is non-trivial, as it is beyond most methods based on
non-learned hierarchical convolutional kernels which obtain less than 83% accuracy (Mairal et al.,
2014; Oyallon and Mallat, 2015; Li et al., 2019). This demonstrates the importance of the learned
weight covariances Cj , as has been observed by Pandey et al. (2022) for modeling sensory neuron
receptive fields. It also demonstrates that the covariances Cj are sufficiently well-estimated from
a single network to preserve classification accuracy. We note however that Shankar et al. (2020)
achieve a classification accuracy of 90% with a non-trained kernel corresponding to an infinite-
width convolutional network.

A consequence of our results is that these trained scattering networks have rotation invariant
non-linearities, in the sense that the non-linearity can be applied in random directions, provided
that the next layer is properly aligned. This comes in contrast to the idea that neuron weights
individually converge to salient features of the input data. For large enough networks, the

122



Section 7.3. Numerical results

relevant information learned at the end of training is therefore not carried by individual neurons
but encoded through the weight covariances Cj .

For smaller networks, the covariance-encoding property no longer holds, as Figure 7.9 sug-
gests that trained weights becomes non-Gaussian. Networks trained on more complex tasks
might require larger widths for the Gaussian rainbow approximation to be valid. We have re-
peated the analysis on scattering networks trained on the ImageNet dataset (Russakovsky et al.,
2015), which reveals that the Gaussian rainbow approximation considered here is inadequate at
widths used in practice. This is corroborated by many empirical observations of (occasional)
semantic specialization in deep networks trained on ImageNet (Olah et al., 2017; Bau et al.,
2020; Dobs et al., 2022). A promising direction is to consider Gaussian mixture rainbow mod-
els, as used by Dubreuil et al. (2022) to model the weights of linear RNNs. Finally, we note
that the Gaussian approximation also critically rely on the fixed wavelet spatial filters of scat-
tering networks. Indeed, the spatial filters learned by standard CNNs display frequency and
orientation selectivity (Krizhevsky et al., 2012) which cannot be achieved with a single Gaus-
sian distribution, and thus require adapted weight distributions πj to be captured in a rainbow
model.

Training dynamics. The rainbow model is a static model, which does not characterize the
evolution of weights from their initialization during training. We now describe the SGD training
dynamics of the seven-hidden-layer scattering network trained on CIFAR-10 considered above.
This dynamic picture provides an empirical explanation for the validity of the Gaussian rainbow
approximation.

We focus on the j-th layer weight matrix Wj(t) as the training time t evolves. To measure
its evolution, we consider its projection along the principal components of the final learned
covariance Ĉj . More precisely, we project the dj neuron weights wji(t), which are the rows of
Wj(t), in the direction of the r-th principal axis ejr of Ĉj . This gives a vector ur(t) ∈ Rdj for
each PCA rank r and training time t, dropping the index j for simplicity:

ur(t) =
(
⟨wji(t), ejr⟩

)
i≤dj

.

Its squared magnitude is proportional to the variance of the neuron weights along the r-th
principal direction, which should be of the order of 1 at t = 0 due to the white noise initialization,
and evolves during training to reach the corresponding Ĉj eigenvalue. On the opposite, the
direction of ur(t) encodes the sampling of the marginal distribution of the neurons along the
r-th principal direction: a large entry ur(t)[i] indicates that neuron i is significantly correlated
with the r-th principal component of Ĉj . This view allows considering the evolution of the
weights Wj(t) separately for each principal component r. It offers a simpler view than focusing
on each individual neuron i, because it gives an account of the population dynamics across
neurons. It separates the weight matrix by columns r (in the weight PCA basis) rather than
rows i. We emphasize that we consider the PCA basis of the final covariance Ĉj , so that we
analyze the training dynamics along the fixed principal axes ejr which do not depend on the
training time t.

We now characterize the evolution of ur(t) during training for each rank r. We separate
changes in magnitude, which correspond to changes in weight variance (overall stretch), from
changes in direction, which correspond to internal motions of the neurons which preserve their
variance. We thus define two quantities to compare ur(t) to its initialization ur(0), namely the
amplification ratio ar(t) and cosine similarity cr(t):

ar(t) = ∥ur(t)∥
∥ur(0)∥ and cr(t) = ⟨ur(t), ur(0)⟩

∥ur(t)∥ ∥ur(0)∥ . (7.16)

We evaluate these quantities using our seven-hidden-layer scattering network trained on CIFAR-
10. In Figure 7.10, we present the results for the intermediate layer j = 4 (similar behavior is

123



Chapter 7. The Rainbow Model of Deep Networks

1 100 200 300 400 500

Ĉj PCA rank r

100

2× 100

3× 100

4× 100

6× 100

A
m

p
li
fi

ca
ti

on
a
r
(t

)

1 100 200 300 400 500

Ĉj PCA rank r

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

si
m

il
ar

it
y
c r

(t
)

Epoch t = 0

Epoch t = 1

Epoch t = 2

Epoch t = 5

Epoch t = 10

Epoch t = 20

−1 0 1

Ĉj PCA direction 1

−1

0

1

Ĉ
j

P
C

A
d

ir
ec

ti
on

2

−1 0 1

Ĉj PCA direction 1

−1

0

1

Ĉ
j

P
C

A
d

ir
ec

ti
on

10
0

−1 0 1

Ĉj PCA direction 100

−1

0

1

Ĉ
j

P
C

A
d

ir
ec

ti
on

10
1

Figure 7.10: The learning dynamic of a seven-hidden-layer scattering network trained on CIFAR-10 is
mainly a low-dimensional linear amplification effect that preserves most of the positional information of
the initialization. We present results for layer j = 4 (similar behavior is observed for the other layers).
Upper left: amplification (overall stretch) of the weight variance as a function of rank. Upper right:
cosine similarity (internal motion) as a function of rank. Lower panels: projections of individual neurons
along pairs of principal components. Each neuron is represented as a point in the plane, whose trajectory
during training is shown as a connected line (color indicates training time).

observed for the other layers). We show the two quantities ar(t) and cr(t) in the top row of
Figure 7.10 as a function of the training epoch t. We observe that the motion of the weight vector
is mainly an amplification effect operating in a sequence starting with the first eigenvectors, as
the cosine similarity remains of order unity. Given the considered dimensionality (dj = 512),
the observed departure from unity is rather small: the solid angle subtended by this angular
change of direction covers a vanishingly small surface of the unit sphere in dj dimensions. We
thus have ur(t) ≈ ar(t)ur(0).

These results show that the weight evolution can be written

Wj(t) ≈ Gj Ĉ
1/2
j (t),

where Gj = Wj(0) is the initialization and the weight covariance Ĉj(t) evolves by amplification
in its fixed PCA basis:

Ĉj(t) =
∑
r

ar(t)2 ejre
T
jr.

In other words, the weight evolution during training is an ensemble motion of the neuron popu-
lation, with negligible internal motion of individual neurons relative to the population: training
amounts to learning the weight covariance. Surprisingly, the weight configuration at the end of
training thus retains most of the information of its random initialization: the initial configura-
tion can be practically recovered by whitening the trained weights. In addition, the stochasticity
introduced by SGD and data augmentation appears to be negligible, as it does not affect the

124



Section 7.4. Discussion

relative positions of individual neurons during training. This observation has two implications.
First, the alignment rotations Âj which describe the trained network relative to its infinite-width
rainbow counterpart (as ϕ̂j ≈ ÂT

j ϕj) are entirely determined by the initialization. Second, it
provides an empirical explanation for the validity of the Gaussian rainbow approximation. While
this argument seems to imply that the learned weight distributions πj depend significantly on the
initialization scheme, note that significantly non-Gaussian initializations might not be preserved
by SGD or could lead to poor performance.

The bottom row of Figure 7.10 illustrates more directly the evolution of individual neurons
during training. Although each neuron ofWj(t) is described by a dj−1-dimensional weight vector,
it can be projected along two principal directions to obtain a two-dimensional picture. We then
visualize the trajectories of each neuron projected in this plane. The trajectories are almost
straight lines, as the learning dynamics only amplify variance along the principal directions
while preserving the relative positions of the neurons. Projections on principal components of
higher ranks give a more static picture as the amplification along these directions is smaller.

A large literature has characterized properties of SGD training dynamics. Several works
have observed that dynamics are linearized after a few epochs (Jastrzebski et al., 2020; Leclerc
and Madry, 2020), so that the weights remain in the same linearly connected basin thereafter
(Frankle et al., 2020). It has also been shown that the empirical neural tangent kernel evolves
mostly during this short initial phase (Fort et al., 2020) and aligns itself with discriminative
directions (Baratin et al., 2021; Atanasov et al., 2022). Our results indicate that this change
in the neural tangent kernel is due to the large amplification of the neuron weights along the
principal axes of Ĉj , which happen early during training. The observation that neural network
weights have a low-rank departure from initialization has been made in the lazy regime by
Thamm et al. (2022), for linear RNNs by Schuessler et al. (2020), and for large language-model
adaptation by Hu et al. (2022). The sequential emergence of the weight principal components
has been derived theoretically in linear networks by Saxe et al. (2014, 2019).

7.4 Discussion
We have introduced rainbow networks as a model of the probability distribution of weights of
trained deep networks. The rainbow model relies on two assumptions. First, layer dependencies
are reduced to alignment rotations. Second, neurons are independent when conditioned on the
previous layer weights. Under these assumptions, trained networks converge to a deterministic
function in the corresponding rainbow RKHS when the layer widths increase. We have verified
numerically the convergence of activations after alignment for scattering networks and ResNets
trained on CIFAR-10 and ImageNet. We conjecture that this convergence conversely implies the
rotation dependency assumption of the rainbow model. We have verified this rotation on the
second-order moments of the weights through the convergence of their covariance after alignment
(for scattering networks trained on CIFAR-10 due to computational limitations).

The data-dependent kernels which describe the infinite-width rainbow networks, and thus
their functional properties, are determined by the learned distributions πj . Mathematically, we
have shown how the symmetry properties of these distributions are transferred on the network.
Numerically, we have shown that their covariances Cj compute projections in a low-dimensional
“informative” subspace that is shared among networks, is low-dimensional, and can be approx-
imated efficiently with an unsupervised KPCA. It reveals that networks balance low learning
complexity with high expressivity by computing a sequence of reductions and increases in di-
mensionality.

In the Gaussian case, the distributions πj are determined by their covariances Cj . We have
validated that factorizing the learned weights with fixed wavelet filters is sufficient to obtain
Gaussian rainbow networks on CIFAR-10, using scattering networks. In this setting, we can
generate new weights and have shown that the weight covariances Cj are sufficient to capture

125



Chapter 7. The Rainbow Model of Deep Networks

most of the performance of the trained networks. Further, the training dynamics are reduced to
learning these covariances while preserving memory of the initialization in the individual neuron
weights.

Our work has several limitations. First, we have not verified the rainbow assumptions of
rotation dependence between layers beyond second-order moments, and conditional indepen-
dence between neurons beyond the Gaussian case. A complete model would incorporate the
training dynamics and show that such statistical properties are satisfied at all times. Second,
our numerical experiments have shown that the Gaussian rainbow approximation of scattering
networks gradually degrades when the network width is reduced. When this approximation
becomes less accurate, it raises the question whether incorporating more prior information in
the architecture could lead to Gaussian rainbow networks. Finally, even in the Gaussian case,
the rainbow model is not completely specified as it requires to estimate the weight covariances
Cj from trained weights. A major mathematical issue is to understand the properties of the
resulting rainbow RKHS which result from properties of these weight covariances.

By introducing the rainbow model, this chapter provides new insights towards understanding
the inner workings of deep networks. It leads to a conjecture for a static mean-field limit of deep
networks presented in Section 1.4.3, which may be used to study their training dynamics.

126



Conclusion





Chapter

8
Conclusion

Les ogres sont parfois poètes.

La magicienne

Chapter content
8.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

In this dissertation, I have tried to uncover the hidden mathematical structure in image
distributions, deep convolutional architectures, and deep network weights. A guiding principle
has been to separate the problem across scales and exploit the spatial structure of images, which
performs a reduction to problems along channels only. However, much more remains to be done,
and in particular integrating the results presented in this dissertation in a unified picture.

What does it even mean to understand what the network has learned and what it is comput-
ing? It calls for a better understanding of the relationships between properties of the training
data, network weights, and hidden activations. Studying unsupervised and supervised learning
together might be a step towards this goal and may lead to fruitful interactions in the future.

We summarize our findings in Section 8.1, and end the dissertation with a few perspectives
for future research outlined in Section 8.2.

8.1 Summary of findings

Multiscale conditional probabilities. In Chapters 2 to 4, we have established several prop-
erties of the wavelet (packet) conditional distributions p(x̄j |xj) in different contexts. Namely,
these conditional distributions are log-concave for multiscale physical fields whose interactions
are dominated by a quadratic kinetic energy at high-frequencies. It provides a wider class of
probability distributions than globally log-concave distributions that still allows breaking the
curse of dimensionality for both learning and sampling. We have also initiated a study of the
properties of the scores of natural image distributions. We have shown that a multiscale fac-
torization leads to approximate stationarity and locality, but one can expect that there is much
more to uncover.

Role of non-linearity in image classification. In Chapters 5 and 6, we have investigated
the role of the non-linearity in image classification architectures. We have shown that its main
function is to collapse the phase of hidden network activations, as opposed to computing sparse
representations with a thresholding. This role can be further constrained to collapsing the phase
of wavelet coefficients, leading to a structured architecture which relies solely on this mechanism.
It allows eliminating biases and pre-defining all spatial filters, and thus learning only weights
along channels. This constrained architecture strikes a good balance between performance and
amenability to analysis, and thus might be useful for future research.



Chapter 8. Conclusion

Structure of weights in deep networks. In Chapter 7, we have identified that network
activations define an alignment that can be used to register the next layer weights. It has led us
to a conjecture for a multi-layer mean-field limit of deep neural networks. This view also gives
insights into the behavior of deep networks, revealing that they compute an alternating sequence
of operators that increase or decrease the dimensionality of intermediate representations. In-
triguingly, the training dynamics appear straightforward in relatively simple cases, which calls
for a deeper explanation. Combined with our learned scattering architecture, we obtained a
probabilistic model of trained weights with conditionally Gaussian distributions.

The rainbow model demonstrates the efficiency of random projections as a means to compute
an approximate dot-product kernel embedding. Importantly, it highlights the importance of the
covariance of the random features, and explains that this covariance needs to be aligned to
the previous layer activations if such operators are cascaded. This non-linear operator is of a
different nature than the phase collapses. Colored random projections, which are reminiscent
of compressed sensing, are thus a new tool which may also prove useful in image generative
modeling.

8.2 Perspectives

Spatial and probability scales. It is interesting to draw parallels between the wavelet con-
ditional factorization, which iteratively generates images at different scales (xJ , . . . , x0), and a
diffusion model, which iteratively generates images at different noise levels (xT , . . . , x0).

The wavelet conditional factorization represents a distribution by conditional energies at each
scale, or conditional scores when there is log-concavity, which may not always be the case. This
representation avoids the need to deal with unstable free energies, and leverages a self-similarity
over scales to obtain low-dimensional parameterized models.

In diffusions models, we get log-concavity “for free”, and we represent a distribution by its
scores at all noise levels. It provides a new way to think about and parameterize probability
distributions. The noise level axis can be thought of as a probability scale axis, thus painting a
geometric picture: the scores (∇Et(x))t,x are a scale-space representation of the original prob-
ability distribution through (soft) “projection” operators on its support. It is a central issue
to understand the properties of this probability scale space and its relationship with the more
classical image scale space. In particular, comparing the two raises the question whether there
is a form of self-similarity properties of scores across noise levels that can be exploited to reduce
the dimensionality of parametric models of such scores.

Probability decompositions. More generally, one could consider general latent variables
(x = z0, z1, . . . , zn) such that the forward conditionals p(zi|z0, . . . , zi−1) are easy to sample from,
and learn models of the backward conditional distributions p(zi|zi+1, . . . , zn). The wavelet con-
ditional factorization and diffusion models are both special cases of this more general framework,
with explicit forward probability distributions that are Markov and either a delta function or
a Gaussian distribution. One can wonder whether there are other useful such decompositions
with other latent variables, what would be their mathematical structure, or whether one could
learn them from data. One example that would be worth exploring is to consider the activa-
tions (ϕj(x))j of a pre-trained deep network, such as an image classifier. Desirable properties
of these decompositions include having log-concave (or even Gaussian) backward conditional
distributions that admit low-dimensional parametric models, while minimizing the number and
dimensionality of the latent variables for computational efficiency. Such decompositions seem
to be a powerful tool to factorize probability distributions into tractable factors while avoiding
the instability issues that can arise from directly learning energy functions of distributions near
a “critical point”.

130



Section 8.2. Perspectives

Data, activations, and weights. Just as the activations of a deep network can be thought
of as latent variables, the weights of this network are a parameterization of the data probability
distribution E(x) or E(y|x). Understanding the mathematical relationships between these three
objects (activations, weights, and data) is a central issue to resolve the deep learning mystery,
and it is fruitful to consider them together and study their relationships. For instance, what
are the weight distributions in score networks, and can we relate them to properties of the data
distribution? How do the weight distributions at a given layer depend on the activations at
the previous layer, and how do these weight distributions in turn give rise to the activations at
the next layer? Answering these questions would lead to a much more complete picture of the
behavior of deep networks, their computations, and what they have learned.

Dimensionality and function classes. We observed that activations are high-dimensional
(their spectrum follows a power-law of index close to negative unity) while weights are low-
dimensional (their spectrum is approximately exponential with a relatively small characteristic
scale), but we have not addressed how and why this is the case. These spectra are probably
related to a measure of the “size” or “complexity” of the associated reproducing kernel Hilbert
spaces, and therefore properties of the approximation class including generalization performance.

Training dynamics and algorithms. Another question we left open is to model the training
dynamics of deep networks: can we prove a multi-layer mean-field limit using alignment to
feature vectors associated to time-dependent kernels? We made the surprising observation that
training dynamics of learned scattering networks on the CIFAR-10 dataset are mostly “in a
straight line”. Mathematically, this calls for an explanation of this phenomenon, which would
also explain the remarkable stability of hidden network activations across layers. Numerically, a
direction for future research would be to try to leverage these observations to design architectures
and training algorithms that are more time- and data-efficient, which could potentially have an
important practical impact.

Understanding depth. An important limitation of the rainbow model is that it is only a
layer-wise characterization of the network, and the global picture remains elusive. In particular,
it is not clear how one would compare networks with different numbers of layers. A possible di-
rection would be to derive an infinite-depth limit and define alignments of a finite-depth network
to its infinite-depth counterpart. An infinite-depth network defines a continuous transport of its
input to its output through a continuous sequence of intermediate representations. What are
the properties of this transport? It also raises the question of the nature of the depth axis. In a
CNN, depth corresponds to both spatial scale (the size of the receptive fields of a given neuron)
and non-linearity order (the amount of non-linear processing done to the input). An important
issue is to understand the nature and role of depth, perhaps by disentangling different notions
such as scale and order.

131





Appendices





Appendix

A
Appendix for Chapter 2

Chapter content
A.1 Definition of wavelet packet projectors . . . . . . . . . . . . . . . . . 135

A.1.1 Conjugate mirror filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.1.2 Orthogonal frequency decomposition . . . . . . . . . . . . . . . . . . . . 136
A.1.3 Wavelet packet projectors . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.2 Score matching and MALA algorithms for CSLC exponential families137
A.2.1 Multiscale energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2.2 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.3.3 Mixing times in MALA . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.4 Energy estimation with free-energy modeling . . . . . . . . . . . . . 142
A.4.1 Free-energy score matching . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.4.2 Parameterized free-energy models . . . . . . . . . . . . . . . . . . . . . . 142
A.4.3 Multiscale energy decomposition . . . . . . . . . . . . . . . . . . . . . . 143

A.5 Proof of Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.1 Definition of wavelet packet projectors
The fast wavelet transform (Mallat, 1989) splits a signal in frequency into two orthogonal coarser
signals, using two orthogonal conjugate mirror filters g and ḡ.

We review the construction of such filters in appendix A.1.1. A description of the fast
wavelet transform is then given in appendix A.1.2. Finally, we define in appendix A.1.3 the
wavelet packet (Coifman et al., 1992) projectors (Gj , Ḡj) used in Section 2.3.

A.1.1 Conjugate mirror filters

Conjugate mirror filters g and ḡ satisfy the orthogonal and reconstruction conditions

gTḡ = ḡTg = 0,
gTg + ḡTḡ = Id .

(A.1)

In one dimension, the conditions (A.1) are satisfied (Mallat, 1989) by discrete filters (g(n))n∈Z, (ḡ(n))n∈Z
whose Fourier transforms ĝ(ω) = ∑

n g(n)e−inω and ˆ̄g(ω) = ∑
n g(n)e−inω satisfy

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2,
ĝ(0) =

√
2,

ˆ̄g(ω) = e−iω ĝ(ω + π).
(A.2)



Appendix A. Appendix for Chapter 2

Figure A.1: Fourier transform of Daubechies-4 orthogonal filters ĝ(ω) (in green) and ˆ̄g(ω) (in orange).

We first design a low-frequency filter g such that ĝ(ω) satisfies (A.2), and then compute ḡ with

ḡ(n) = (−1)1−ng(1− n). (A.3)

The choice of a particular low pass filter g is a trade-off between a good localization in space
and a good localization in the Fourier frequency domain. Choosing a perfect low-pass filter
g(ω) = 1ω∈[−π/2,π/2] leads to Shannon wavelets, which are well localized in the frequency domain
but have a slow decay in space. On the opposite, a Haar wavelet filter g(n) =

√
21n∈{0,1} has a

small support in space but is poorly localized in frequency. Daubechies filters (Daubechies, 1992)
provide a good joint localization both in the spatial and Fourier domains. The Daubechies-4
wavelet is shown in Figure A.1.

In two dimensions (for images), wavelet filters which satisfy the orthogonality conditions in
(A.1) can be defined as separable products of the one-dimensional filters g and ḡ (Mallat, 2008),
applied on each coordinate. It defines one low-pass filter g2 and 3 high-pass filters ḡ2 = (ḡk2 )1≤k≤3:

g2(n1, n2) = g(n1)g(n2),
ḡ1

2(n1, n2) = g(n1)ḡ(n2),
ḡ2

2(n1, n2) = ḡ(n1)g(n2),
ḡ3

2(n1, n2) = ḡ(n1)ḡ(n2).

(A.4)

For simplicity we shall write g and ḡ the filters g2 and ḡ2. ḡ outputs the concatenation of the 3
filters ḡk2 .

A.1.2 Orthogonal frequency decomposition

We introduce the orthogonal decomposition of a signal xj−1 with the low pass filter g and the
high pass filter ḡ, followed by a sub-sampling. It outputs (xj , x̄j), which has the same dimension
as xj−1, defined in one dimension by

xj [p] = ∑
n∈R2

g[n− 2p]xj−1[n],

x̄j [p] = ∑
n∈R2

ḡ[n− 2p]xj−1[n]. (A.5)

The inverse transformation is
xj [p] = ∑

n∈R2
g[p− 2n]xj+1[n] + ∑

n∈R2
ḡ[p− 2n]x̄j+1[n]. (A.6)

The orthogonal frequency decomposition in two dimensions is defined similarly. It decom-
poses a signal x of size

√
d×
√
d into a low frequency signal and 3 high frequency signals, each

of size
√
d

2 ×
√
d

2 .

136



Section A.2. Score matching and MALA algorithms for CSLC exponential families

A.1.3 Wavelet packet projectors

An orthogonal frequency decomposition projects a signal into high and low frequency domains.
In order to refine the decomposition (by separating different frequency bands), wavelet packets
projectors are obtained by cascading this orthogonal frequency decomposition.

The usual fast wavelet transform starts from a signal x̄0 of dimension d, decomposes it
into a low-frequency x1 and a high frequency x̄1, and then iterates this decomposition on the
low-frequency x1 only. It iteratively decomposes xj−1 into the lower frequencies xj and the high-
frequencies x̄j . The resulting orthogonal wavelet coefficients are (x̄j , xJ)1≤j≤J . The resulting
decomposition remains of dimension d.

To obtain a finer frequency decomposition, we use the M -band wavelet transform (Mallat,
2008), a particular case of wavelet packets (Coifman et al., 1992). It first applies the fast wavelet
transform to the signal, and obtains (x̄j , xJ)1≤j≤J . Each high-frequency output x̄j undergoes
an orthogonal decomposition using g and ḡ. Then both outputs of the decomposition are again
decomposed, and so on, (M − 1)-times. The coefficients are then sorted according to their
frequency support, and also labeled as (x̄j , xJ)1≤j≤J ′ , with J ′ = J2M−1, also referred to as J in
the main text.

The wavelet packet decomposition corresponds to first decomposing the frequency domain
dyadically into octaves, and then each dyadic frequency band is further decomposed into 2M−1

frequency annuli. We say this decomposition corresponds to a 1/2M−1 octave bandwidth. Pre-
cisely, if j = j′2M−1 + r, then x̄j has a frequency support over an annulus in the frequency
domain, with frequencies with modulus of order 2−j′

π(1− 2−M+1(r− 1/2)). A two-dimensional
visualization of the frequency domain can be found in Figure 2.2, for M = 1 and M = 2,
corresponding to 1 and 1/2 octave bandwidths.

Figure A.2 shows the iterative use of g and ḡ used to obtain the decomposition, in one
dimension, for M = 2. Note that the filters ḡ and g successively play the role of low- and
high-pass filters because of the subsampling (Mallat, 2008).

We now introduce the corresponding orthogonal projectors Gj and Ḡj , defined such that

x̄j = Ḡjxj−1,
xj = Gjxj−1,

(A.7)

where the (x̄j)j , sorted in frequency, have been obtained trough the M -band wavelet transform,
as described above, and xj refers to the signal reconstructed using (xJ , x̄j′)j′≥j+1. Let us empha-
size that the image xj−1 is reconstructed from xj and the higher frequencies x̄j , and defined on
a spatial grid which is either the same as xj or twice larger. For M = 2, Figure A.3 shows that
x0 and x1 are defined on the same grid, although x1 has a lower-frequency support. Similarly
x2 and x3 are both represented on the same grid, which is twice smaller, and so on.

The orthogonal projectors satisfy GT
j Gj + ḠT

j Ḡj = Id. We then have the inverse formula

xj−1 = GT
j xj + ḠT

j x̄j . (A.8)

This decomposition using Gj and Ḡj recursively splits the signal in frequencies, from high to
low frequencies.

A.2 Score matching and MALA algorithms for CSLC exponen-
tial families

A.2.1 Multiscale energies

This section introduces the explicit parametrization of the energies Ēθ̄j
and EθJ

.

137



Appendix A. Appendix for Chapter 2

Figure A.2: In one dimension, a wavelet packet transform is obtain by cascading filterings and subsam-
plings with the filters g and ḡ along a binary splitting tree which outputs xJ and x̄j for j ≥ J .

Figure A.3: Low-frequency maps xj for M = 2 for a φ4 realization.

The conditional energies Ēθ̄j
(xj , x̄j) are defined with a bilinear term which represents the

interaction between xj and x̄j and a scalar potential:

Ēθ̄j
(xj , x̄j) = 1

2 x̄
T
j K̄j x̄j +

∑
l>j

x̄T
j K̄

′
l,j x̄j+l +

∑
i

v̄j(xj−1[i]), (A.9)

with xj−1 = ḠT
j x̄j+GT

j xj . Equation (A.9) is an equivalent reparametrization of eq. (2.13). Con-
sidering (x̄l)l>j instead of xj allows fixing some coefficients of the K̄ ′

l,j to zero instead of learning
them. First, we set K̄ ′

l,j = 0 if x̄j and x̄j+l are not defined on the same spatial grid. In the
sequel, sums over l only refer to theses terms, which differ depending on the wavelet decompo-
sition. We enforce spatial stationarity by averaging the bilinear interaction terms across space.
We further kept only the non-negligible terms which correspond to neighboring frequencies and
neighboring spatial locations. As displayed in Figure A.4, x̄j is composed of sub-bands x̄kj . We
kept the interaction terms x̄kj [i]x̄k+δk

j+l [i + δi] for l ∈ {0, 1}, δk ∈ {0, 1}, and δi ∈ {0, 1, 2, 3, 4}2,
which correspond to local interactions in both space and frequency.

The scalar potential v̄j(t) is decomposed on a family of predefined functions ρk,j(t):

v̄j(t) =
∑
k

ᾱk,j ρk,j(t). (A.10)

ρj,k is defined in order to expand the scalar potential v̄j which captures the marginal distributions
of the xj−1[i], which do not depend on i due to stationarity. We divide this marginal into N
quantiles. Each ρk,j is chosen to be a regular bump function having a finite support on the k-th
quantile. This parametrization performs a pre-conditioning of the score matching Hessian.

Let ρ be a bump function with a support in [−1/2, 1/2]. For each j, let aj,k and lj,k be
respectively the center and width of the k-th quantile of the marginal distribution of x̄j , we

138



Section A.2. Score matching and MALA algorithms for CSLC exponential families

Figure A.4: Sub-bands of x̄j for a wavelet packet decomposition with a half-octave bandwidth.

define

ρk,j(t) = lk
√
N ρ

(
t− aj,k
lj,k

)
, (A.11)

with the condition
∥ρ′∥22 = 1

∥Ḡj∥
2
2

, (A.12)

in order to balance the magnitude of the scalar potentials with the quadratic potentials.
The potential vector is thus

Φ̄j(xj , x̄j) =
(∑

i

x̄kj [i]x̄k+δk
j+l [i+ δi],

∑
i

ρk′
,j(xj−1[i])

)
0≤l≤1,0≤δk≤1,0≤δi≤4,1≤k′≤N

. (A.13)

Similarly, we define EθJ
as the sum of a quadratic energy and a scalar potential:

EθJ
(xJ) = 1

2x
T
JKJxJ +

∑
i

vJ(xJ [i]). (A.14)

The bilinear interaction terms are averaged across space to enforce stationarity. The scalar
potential vJ(t) is also decomposed over a family of predefined functions ρk,J(t):

vJ(t) =
∑
k

αk,J ρk,J(t), (A.15)

defined similarly as above. This yields a potential vector

ΦJ(xJ) =
(∑

i

xJ [i]xJ [i+ δi], ρk,J(xJ)
)

0≤δi≤4,1≤k≤N

, (A.16)

leading to
EθJ

(xJ) = θT
J ΦJ(xJ), (A.17)

with θJ = (KJ , αk,J)k.

139



Appendix A. Appendix for Chapter 2

A.2.2 Pseudocode

The procedure to learn the parameters (θ̄j)j of the conditional energies Ēθ̄j
(xj , x̄j) by score

matching is detailed in Algorithm A.1. The procedure to generate samples from the distribution
pθ(x) with MALA is detailed in Algorithm A.2.

Algorithm A.1 Score matching for exponential families with CSLC distributions
Require: Training samples (xi)1≤i≤n.

Initialize xi0 = xi for 1 ≤ i ≤ n.
for j = 1 to J do

Decompose xij ← Gjx
i
j−1 and x̄ij ← Ḡjx

i
j−1 for 1 ≤ i ≤ n.

Compute the score matching quadratic term Hj ← 1
n

∑n
i=1∇x̄j

Φ̄j(xij , x̄ij)∇x̄j
Φ̄j(xij , x̄ij)T ∈

Rm×m.
Compute the score matching linear term gj ← 1

n

∑n
i=1 ∆x̄j

Φ̄j(xij , x̄ij) ∈ Rm.
Set θ̄j ← H−1

j gj .
end for
return Model parameters (θ̄j)j .

Algorithm A.2 MALA sampling from CSLC distributions
Require: Model parameters (θ̄j)j , an initial sample xJ from p(xJ), step sizes (δj)j , number of

steps (Tj)j .
for j = J to 1 do

Initialize x̄j,0 = 0.
for t = 1 to Tj do

Sample ȳj,t ∼ N
(
x̄j,t−1 − δj∇x̄j

Ēθ̄j
(xj , x̄j,t−1), 2δj Id

)
.

Set a =
∥∥∥∇x̄j

Ēθ̄j
(xj , ȳj,t))

∥∥∥2
+
∥∥∥∇x̄j

Ēθ̄j
(xj , x̄j,t−1))

∥∥∥2
.

Set b =
〈
ȳj,t − x̄j,t−1,∇x̄j

Ēθ̄j
(xj , ȳj,t)−∇x̄j

Ēθ̄j
(xj , x̄j,t−1)

〉
.

Set c = Ēθ̄j
(xj , ȳj,t)− Ēθ̄j

(xj , x̄j,t−1).
Compute acceptance probability p = exp

(
− δj

4 a+ 1
2b− c

)
.

Set x̄j,t = ȳj,t with probability p and x̄j,t = x̄j,t−1 with probability 1− p.
end for
Reconstruct xj−1 = GT

j xj + ḠT
j x̄j,Tj

.
end for
return a sample x0 from p̂θ(x).

A.3 Experimental details

A.3.1 Datasets

Simulations of φ4. We used samples from the φ4 model generated using a classical MCMC
algorithm, for 3 different temperatures, at the critical temperature βc ≈ 0.68, above the critical
temperature at β = 0.50 < βc, and below the critical temperature at β = 0.76 > βc. For
β = 0.76, we break the symmetry and only generate samples with positive mean. For each
temperature, we generate 104 images of size 128× 128.

Weak lensing. We used down-sampled versions of the simulated convergence maps from the
Columbia Lensing Group (http://columbialensing.org/; Zorrilla Matilla et al., 2016; Gupta

140

http://columbialensing.org/


Section A.3. Experimental details

et al., 2018). Each map, originally of size 1024×1024, is downsampled twice with local averaging.
We then extract random patches of size 128× 128.

To pre-process the data, we subtract the minimum of the pixel values over the entire dataset,
and then take the square root. This process is reversed after generating samples. We also do not
consider the outliers (less than 1% of the dataset) with pixels above a certain cutoff, in order to
reduce the extent of the tail and attenuate weak lensing peaks. Our dataset is made of ≃ 4×103

images.

A.3.2 Experimental setup

Wavelet filter. We used the Daubechies-4 wavelet (Daubechies, 1992), see the filter in Fig-
ure A.1.

Wavelet packets. We implemented wavelet packets in PyTorch, inspired from the PyWavelets
software (Lee et al., 2019a).

Score matching. We pre-condition the score matching Hessian Hj by normalizing its diag-
onal before computing H−1

j gj in Algorithm A.1. After this normalization, we obtain condition
numbers κθ̄j

which satisfy κθ̄j
≤ 2× 103 at all j.

Sampling. The MALA step sizes δj are adjusted to obtain an optimal acceptance rate of
≈ 0.57. Depending on the scale j, the stationary distribution is reached in Tj ≈ 20–400 iterations
from a white noise initialization. We used a qualitative stopping criterion according to the quality
of the matching of the histograms and power spectrum.

A.3.3 Mixing times in MALA

Sampling from pθ requires sampling from pθJ
, and then conditionally sampling from pθ̄j

(x̄j |xj).
This last step is performed with a Markov chain whose stationary distribution is pθ̄j

(x̄j |xj) for
a given xj . It generates successive samples x̄j(t) where t is the the step number in the Markov
chain.

We introduce the conditional auto-correlation function:

Aj(t) =
E
[(
x̄j(t)− E[x̄j |xj ]

)(
x̄j(0)− E[x̄j |xj ]

)]
E[δx̄2

j ]
.

The expected value E is taken with respect to both xj and the sampled x̄j . Aj(t) has an
exponential decay. Let τ̄j be the mixing time defined as the time it takes for the Markov chain
to generate two independent samples:

Aj(t) ≈ Aj(0) exp
(
− t

τ̄j

)
.

τ̄j is computed by regressing log(Aj(t)) over t.
Each iteration of MALA with pθ̄j

(x̄j | xj) computes a gradient of size d̄j . In order to estimate
the real computational cost of the sampling of pθ, we average τ̄j proportionally to the dimension
d̄j :

τ̄ =
J∑
j=1

d̄j
d
τ̄j + τJ

dJ
d
,

where d is the dimension of x.

141



Appendix A. Appendix for Chapter 2

A.4 Energy estimation with free-energy modeling
This section explains how to recover an explicit parametrization of the negative log-likelihood
− log pθ from the parameterized energies Ēθ̄j

. We introduce a parameterization of the normaliza-
tion constant of the Gibbs energies for each j and describe an efficient score-matching algorithm
to learn the parameters. This leads to a decomposition of the negative log-likelihood − log pθ
over scales.

A.4.1 Free-energy score matching

From the decomposition

pθ(x) = pθJ
(xJ)

J∏
j=1

pθ̄j
(x̄j |xj),

we obtain

− log pθ(x) = EθJ
(xJ) +

J∑
j=1

(
Ēθ̄j

(xj , x̄j) + log Z̄θ̄j
(xj)

)
+ cst, (A.18)

where Z̄θ̄j
(xj) is the normalization constant for Ēθ̄j

(xj , x̄j). To retrieve the global negative
log-likelihood − log pθ(x), we thus compute an approximation of − log Z̄θ̄j

(xj) with a parametric
family Fθ̃j

.
The parameters θ̃j of the approximation of the normalizing factors Z̄θ̃j

can be learned in a
manner similar to denoising score matching. Indeed, using the identity

−∇xj
log Z̄θ̄j

(xj) = E
[
∇xj

Ēθ̄j
(xj , x̄j) |xj

]
,

which can be proven by a direct computation of the gradient, the parameters θ̃j can be estimated
by minimizing

ℓ̃j(θ̃j) = E
[∥∥∥∇xj

Fθ̃j
−∇xj

Ēθ̄j

∥∥∥2
]
. (A.19)

For an exponential model Fθ̃j
= θ̃T

j Φ̃j with a fixed potential vector Φ̃j , eq. (A.19) is quadratic
in θ̃ and admits a closed-form solution:

θ̃j = E
[
∇xj

Φ̃j∇xj
Φ̃T
j

]−1
E
[
∇xj

Φ̃j∇xj
Ēθ̄j

]
.

We finally obtain the energy decomposition

− log pθ(x) = EθJ
(xJ) +

J∑
j=1

(
Ēθ̄j

(xj , x̄j)− Fθ̃j
(xj)

)
+ cst. (A.20)

This score-based method is much faster and simpler to implement than likelihood-based methods
such as the thermodynamic integration of Marchand et al. (2022), which requires generation of
many samples while varying the parameters θ̄j of the conditional energy Ēθ̄j

.

A.4.2 Parameterized free-energy models

The potential vector Φ̃j is modeled in the class of eq. (2.11), following Marchand et al. (2022)
and similarly to Appendix A.2.1:

Fθ̃j
(xj) = 1

2x
T
j K̃jxj + Ṽj(xj) +

∑
i

ṽj(xj [i])

ṽj(t) =
∑
k

α̃j,kρ̃j,k(t),

142



Section A.4. Energy estimation with free-energy modeling

Figure A.5: For φ4 at βc, the conditional potentials v̄j+1 and free-energy potential ṽj cancel out. Only
j = 1 is shown, other scales show similar behavior.

which gives θ̃j = (K̃j , α̃j,k)k and an associated potential vector

Φ̃j(xj) =
(1

2xjx
T
j , ρ̃j,k(xj)

)
k
.

A.4.3 Multiscale energy decomposition

We now expand the models for the conditional energies Ēθ̄j
and the so-called free energies Fθ̃j

in
eq. (A.20). All the quadratic terms (KJ , K̄j , K̃j)j can be regrouped in an equivalent quadratic
term K. We then have

− log pθ(x) = 1
2x

TKx+
∑
i

vJ(xJ [i]) +
J∑
j=1

(
v̄j(xj−1[i])− ṽj(xj [i])

)
= 1

2x
TKx+

∑
i

v̄1(x0[i]) +
J∑
j=1

(
v̄j+1(xj [i])− ṽj(xj [i])

),
with v̄J+1 = vJ . This defines multiscale scalar potentials Vj :

Vj = v̄j+1 − ṽj ,
V0 = v̄1,

such that we have the global negative log-likelihood or energy function:

− log pθ(x) = 1
2x

TKx+
J∑
j=0

∑
i

Vj(xj [i]).

For φ4 at critical temperature, as derived by Marchand et al. (2022), the only non-zero scalar
potential will be V0. The other Vj potentials are zero, up to a quadratic term.

As a numerical test, Figure A.5 verifies that on φ4 at critical temperature, v̄j+1 and ṽj indeed
cancel out so that Vj = 0 for j > 0. In order to ensure that the quadratic difference mentioned
above vanishes, we subtract to ṽj the quadratic interpolation of ṽj − v̄j+1.

143



Appendix A. Appendix for Chapter 2

A.5 Proof of Proposition 2.3
We directly compute the Hessian

−∇2
x̄1

log p(x̄1|x1) = −Ḡ1∇
2
x log p(x)ḠT

1

= Ḡ1
(
K − diag

(
(v′′(x[i]))

)
i

)
ḠT

1 ,

where we have used

p(x̄1|x1) = p(x)
p(x1) .

Both terms in the Hessian can now be bounded from below. The assumption on the range
of Ḡ1 implies that

Ḡ1KḠ
T
1 ⪰ λ|ω0|

η Id,

and the assumption on v′′ implies that

Ḡ1diag
(
(v′′(x[i]))

)
i
ḠT

1 ⪰ −γḠ1Ḡ
T
1 = −γ Id,

where we have used the fact that Ḡ1 is an orthogonal projector.
Combining the two then gives

−∇2
x̄1

log p(x̄1|x1) ⪰ (λ|ω0|
η − γ) Id,

and the assumption on |ω0| guarantees that λ|ω0|
η − γ > 0. Similarly, the assumption v′′ ≤ δ

implies that

−∇2
x̄1

log p(x̄1|x1) ⪯ (λΩη + δ) Id,

where Ω = sup |ω| is the maximum frequency, which concludes the proof.

144



Appendix

B
Appendix for Chapter 3

Chapter content
B.1 WSGM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.2 Introduction to the fast orthogonal wavelet transform . . . . . . . . 146
B.3 Experimental details on Gaussian experiments . . . . . . . . . . . . . 147
B.4 Experimental details on the φ4 model . . . . . . . . . . . . . . . . . . 148
B.5 Experimental details on CelebA-HQ . . . . . . . . . . . . . . . . . . . 148

B.1 WSGM algorithm
In Algorithm B.1, we provide the pseudocode for WSGM. Notice that the training of score
models at each scale can be done in parallel, while the sampling is done sequentially one scale
after the next.

Algorithm B.1 Wavelet Score-based Generative Model

Require: J , Niter, N , T ,{θ̄j,0, θJ,0}
J
j=0, {xm

0 }
M
m=1

1: /// WAVELET TRANSFORM ///
2: for j ∈ {1, . . . , J} do
3: for m ∈ {1, . . . ,M} do
4: xm

j = γ−1
j Gxm

j−1, x̄m
j = γ−1

j Ḡxm
j−1 ▷ Wavelet transform of the dataset

5: end for
6: end for
7: /// TRAINING ///
8: Train score network sθ

⋆
J

at scale J with dataset {xm
J }

M
m=0 ▷ Unconditional SGM training

9: for j ∈ {J, . . . , 1} do ▷ Can be run in parallel
10: for n ∈ {0, . . . , Niter − 1} do
11: Sample (x̄j,0, xj) from {x̄m

j , x
m
j }

M
m=1

12: Sample t in [0, T ] and Z̄ ∼ N(0, Id)
13: x̄j,t = e−tx̄j,0 + (1− e−2t)1/2Z̄

14: ℓ(θ̄j,n) = ∥(e−tx̄j,0 − x̄j,t)− (1− e−2t)1/2s̄θ̄j,n
(t, x̄j,t|xj)∥2

15: θ̄j,n+1 = optimizer_update(θ̄j,n, ℓ(θ̄j,n)) ▷ ADAM optimizer step
16: end for
17: θ̄⋆

j = θ̄j,Niter
18: end for
19: /// SAMPLING ///
20: xJ = EulerMaruyama(T,N, sθ

⋆
J
) ▷ Euler-Maruyama recursion following (3.19)

21: for j ∈ {J, . . . , 1} do
22: x̄j = EulerMaruyama(T,N, s̄θ̄

⋆
j
(·, ·|xj)) ▷ Euler-Maruyama recursion following (3.20)

23: xj−1 = γjG
Txj + γjḠ

Tx̄j ▷ Wavelet reconstruction
24: end for
25: return {θ̄⋆

j , θ
⋆
J}

J
j=1, x0 ▷ Returns learned parameters and generated samples



Appendix B. Appendix for Chapter 3

B.2 Introduction to the fast orthogonal wavelet transform
This section introduces the fast orthogonal wavelet transform introduced in Mallat (1989). It
is computed with convolutional operators G and Ḡ. In this section, we deal with the non-
normalized wavelet transform, which is obtained by setting γj = 1. To avoid confusion with
normalized wavelet coefficients (xj , x̄j), we denote the non-normalized wavelet coefficients with
a w exponent: (xwj , x̄wj ).

Let xw0 be a signal. The index u in xw0 (u) belongs to an n-dimensional grid of linear size L
and hence with Ln sites, with n = 2 for images. Let us denote xwj the coarse-grained version of
xw0 at a scale 2j defined over a coarser grid with intervals 2j and hence (2−jL)n sites. The coarser
signal xwj is iteratively computed from xwj−1 by applying a coarse-graining operator, which acts
as a scaling filter G which eliminates high frequencies and subsamples the grid

(Gxwj−1)(u) =
∑
u

′

xwj−1(u′)G(2u− u′) . (B.1)

The index u on the left-hand side runs on the coarser grid, whereas u′ runs on the finer one.
The degrees of freedom of xwj−1 that are not in xwj are encoded in orthogonal wavelet coef-

ficients x̄wj . The representation (xwj , x̄wj ) is an orthogonal change of basis calculated from xwj−1.
The coarse signal xwj is calculated in (B.1) with a low-pass scaling filter G and a subsampling.
In dimension n, the wavelet coefficients x̄wj have 2n − 1 channels computed with a convolution
and subsampling operator Ḡ. We thus have

xwj = Gxwj−1 and x̄wj = Ḡ xwj−1. (B.2)

The wavelet filter Ḡ computes 2n − 1 wavelet coefficients x̄wj (u, k) indexed by 1 ≤ k ≤ 2n − 1,
with separable high-pass filters Ḡk(u)

x̄wj (u, k) =
∑
u

′

xwj−1(u′) Ḡk(2u− u′).

As an example, the Haar wavelet leads to a block averaging filter G. In dimension n = 1

xwj (u) =
xwj−1(2u) + xwj−1(2u+ 1)

√
2

,

and there is a single wavelet channel in x̄wj . The corresponding wavelet filter Ḡ computes the
wavelet coefficients with increments divided by

√
2

x̄wj (u) =
xwj−1(2u)− xwj−1(2u+ 1)

√
2

. (B.3)

If n = 2, then there are 2n − 1 = 3 wavelet channels as shown in Figure 3.1.
The fast wavelet transform cascades (B.2) for 1 ≤ j ≤ J to compute the decomposition of

the high-resolution signal xw0 into its orthogonal wavelet representation over J scales{
xwJ , x̄

w
j

}
1≤j≤J . (B.4)

The wavelet orthonormal filters G and Ḡ define a unitary transformation, satisfying

ḠGT = GḠT = 0 and GTG+ ḠT Ḡ = Id , (B.5)

where Id is the identity. Conjugate mirror conditions are given in Mallat (1989) on the Fourier
transforms of G and Ḡ to build such unitary filters. The filtering equations (B.2) can then be
inverted with the adjoint operators

xwj−1 = GTxwj + ḠTx̄wj . (B.6)

146



Section B.3. Experimental details on Gaussian experiments

The adjoint GT enlarge the grid size of xwj by inserting a zero between each coefficients, and
then filters the output:

(GTxwj )(u) =
∑
u

′

xwj (u′)G(2u′ − u).

The adjoint of Ḡ performs the same operations over the 2n − 1 channels and adds them:

(ḠTx̄wj )(u) =
2n−1∑
k=1

∑
u

′

x̄wj (u′, k) Ḡk(2u′ − u).

The fast inverse wavelet transform Mallat (1989) recovers xw0 from its wavelet representation
(B.4) by progressively recovering xwj−1 from xwj and x̄wj with (B.6), for j going from J to 1.

B.3 Experimental details on Gaussian experiments
We now give some details on the experiments in Section 3.3.2 (Figure 3.2). We use the exact
formulas for the Stein score of pt in this case: if x0 ∼ N (M,Σ), then xt ∼ N(Mt,Σt) with
Mt = e−tM and

Σt = e−2tΣ + (1− e−2t) Id .
Under an ideal situation where there is no score error, the discretization of the (backward)
generative process is given by equation

xk+1 = ((1 + δ) Id−2δΣ−1
T−kδ)xk + 2δΣ−1

T−kδMT−kδ +
√

2δzk+1 , (B.7)

where δ is the uniform step size and zk are i.i.d. white Gaussian random variables. For the SGM
case, M = 0. The starting step of this discretization is itself x0 ∼ N (0, Id). From this formula,
the covariance matrix Σ̂k of xk satisfies the recursion

Σ̂k+1 = ((1 + δ) Id−2δΣ−1
T−kδ)Σ̂k((1 + δ) Id−2δΣ−1

T−kδ) + 2δ Id , (B.8)

from which we can exactly compute Σ̂k for very k, and especially for k = N = T/δ, as a
function of Σ, the final time T , and the step size δ. In all our experiments, we choose stationary
processes: their covariance Σ is diagonal in a Fourier basis, with eigenvalues (power spectrum)
noted P̂k. All the xk remain stationary so Σ̂k is still diagonal in a Fourier basis, with power
spectrum noted P̂k. The error displayed in the left panel of Figure 3.2 is

∥P̂N − P∥ = max
ω
|P̂N (ω)− P (ω)|/max

ω
|P (ω)|,

normalized by the operator norm of Σ.
The illustration in the middle panel of Figure 3.2, for WSGM, is done for simplicity only

at one scale (ie, at j = 1 in Algorithm B.1): instead of stacking the full cascade of conditional
distributions for all j = J, . . . , 1, we use the true low-frequencies xj,0 = x1. Here, we use
Daubechies-4 wavelets. We sample x̄j,0 using the Euler-Maruyama recursion (B.7)-(B.8) for the
conditional distribution. We recall that in the Gaussian case, x̄1 and x1 are jointly Gaussian.
The conditional distribution of x̄1 given x1 is known to be N (Ax1,Γ), where

A = −Cov(x̄1, x1)Var(x1)−1, Γ = Var(x̄1)− Cov(x̄1, x1)Var(x1)−1Cov(x̄1, x1)T. (B.9)

We solve the recursion (B.8) with a step size δ and N = T/δ steps; the sampled conditional
wavelet coefficients x̄j,0 have conditional distribution noted N (ÂNx, Γ̂N ). The full covariance of
(x̃j,0, x̄j,0), written in the basis given by the high/low frequencies, is now given by

Σ̂N =
[

Γ̂N Cov(x1, x̄1)ÂT
N

ÂNCov(x1, x̄1)T Cov(x1, x1)

]
.

147



Appendix B. Appendix for Chapter 3

Figure 3.2, middle panel compares the eigenvalues (power spectrum) of these covariances, as a
function of δ, with the ones of Σ.

The right panel of Figure 3.2 gives the smallest N needed to reach ∥P̂N − P∥ = 0.1 in both
cases (SGM and WSGM), based on a power law extrapolation of the curves N 7→ P̂N .

B.4 Experimental details on the φ4 model

Training data and wavelets. We used samples from the φ4 model generated using a classical
MCMC algorithm — the sampling script will be publicly available in our repository.

The wavelet decompositions of our fields were performed using Python’s pywavelets package
and Pytorch Wavelets package. For synthetic experiments, we used the Daubechies wavelets
with p = 4 vanishing moments (see Mallat, 2008, Section 7.2.3).

Score model. At the first scale j = 0, the distribution of the φ4 model falls into the general
form given in (3.23), and it is assumed that at each scale j, the distribution of the field at scale
j still assumes this shape — with modified constants and coupling parameters. The score model
we use at each scale is given by

sK,θ(x) = 1
2x

TKx+∑
u(θ1v1(x(u)) + · · ·+ θmvm(x(u))), (B.10)

where the parameters are K, θ1, . . . , θm and vi are a family of smooth functions. One can also
represent this score as sK,θ = K · xxT + θTU(x) where Ui(x) = ∑

u vi(x(u)).

Learning. We trained our various algorithms using SGM or WSGM up to a time T = 5
with ntrain = 2000 steps of forward diffusion. At each step t, the parameters were learned by
minimizing the score loss

ℓ(K, θ) = E[|∇sK,θ(xt)|2 + 2∆xsK,θ(xt)]

using the Adam optimiser with learning rate lr = 0.01 and default parameters α, β. At the
start of the diffusion (t = 0) we use 10000 steps of gradient descent. For t > 1, we use only 100
steps of gradient descent, but initialized at (Kt−1, θt−1).

Sampling. For the sampling, we used uniform steps of discretization.
For the error metric, we first measure the L2-norm between the power spectra P, P̂ of the

true φ4 samples and our synthesized examples; more precisely, we set

D1 = ∥P − P̂∥2.

This error on second-order statistics is perfectly suitable for Gaussian processes, but must be
refined for non-Gaussian processes. We also consider the total variation distance between the
histograms of the marginal distributions (in the case of two-dimensions, pixel-wise histograms).
We note this error D2; our final error measure is D1 +D2.

B.5 Experimental details on CelebA-HQ

Data. We use Haar wavelets. The 128× 128 original images are thus successively brought to
the 64× 64 and 32× 32 resolutions, separately for each color channel. Each of the 3 channels of
xj and 9 channels of x̄j are normalized to have zero mean and unit variance.

148



Section B.5. Experimental details on CelebA-HQ

Architecture. Following Nichol and Dhariwal (2021), both the conditional and unconditional
scores are parameterized by a neural network with a U-Net architecture. It has 3 residual blocks
at each scale, with a base number of channels of C = 128. The number of channels at the
k-th scale is akC, where the multipliers (ak)k depend on the resolution of the generated images.
These multipliers are (1, 2, 2, 4, 4) for models at the 128×128 resolution, (2, 2, 4, 4) for models at
the 64× 64 resolution, (4, 4) for the conditional model at the 32× 32 resolution, and (1, 2, 2, 2)
for the unconditional model at the 32× 32 resolution. All models include multi-head attention
layers in blocks operating on images at resolutions 16× 16 and 8× 8. The conditioning on the
low frequencies xj is done with a simple input concatenation along channels, while conditioning
on time is done through affine rescalings with learned time embeddings at each GroupNorm
layer (Nichol and Dhariwal, 2021; Saharia et al., 2021).

Training. The networks are trained with the (conditional) denoising score matching losses

ℓ(θJ) = ExJ ,t,z

||sθJ
(t, e−txJ +

√
1− e−2tz)− z√

1− e−2t
||2
, (B.11)

ℓ(θ̄j) = Ex̄j ,xj ,t,z

||s̄θ̄j
(t, e−tx̄j +

√
1− e−2tz |xj)−

z√
1− e−2t

||2
, (B.12)

where z ∼ N (0, Id) and the time t is distributed as Tu2 with u ∼ U([0, 1]). We fix the maximum
time T = 5 for all scales. Networks are trained for 5×105 gradient steps with a batch size of 128
at the 32× 32 resolution and 64 otherwise. We use the Adam Kingma and Ba (2014) optimizer
with a learning rate of 10−4 and no weight decay.

Sampling. For sampling, we use model parameters from an exponential moving average with
a rate of 0.9999. For each number of discretization steps N , we use the Euler-Maruyama
discretization with a uniform step size δk = T/N starting from T = 5. This discretization
scheme is used at all scales. For FID computations, we generate 30, 000 samples in each setting.

149





Appendix

C
Appendix for Chapter 4

Chapter content
C.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.2 Proof of equation (4.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
C.3 Training and architecture details . . . . . . . . . . . . . . . . . . . . . 152
C.4 Wavelet conditional synthesis algorithm . . . . . . . . . . . . . . . . . 153

C.1 Proof of Theorem 4.1
To simplify notation, we drop the j subscript. Let I (resp. J) denote the set of indices of pixel
values of x̄ (resp. x). If S is a set of indices, we denote x̄(S) = (x̄(i))i∈S∩I . Let G be a graph
whose nodes are I ∪ J . For each i ∈ I, let N(i) ⊆ I ∪ J be the neighborhood of node i, with
i ̸∈ N(i), and N+(i) = N(i) ∪ {i}.

To prove Theorem 4.1, we need to show that the local Markov property

∀i ∈ I, p
(
x̄(i)

∣∣ x̄(I \{i}), x
)

= p
(
x̄(i)

∣∣ x̄(N(i)), x(N+(i))
)
, (C.1)

is equivalent to the conditional score being computable with RFs restricted to neighborhoods

∀i ∈ I, ∂ log p
∂x̄(i)

(
x̄
∣∣x) = fi

(
x̄(N+(i)), x(N+(i))

)
, (C.2)

for some functions fi.
We first prove that eq. (C.1) implies eq. (C.2). Let i ∈ I. We have the following factorization

of the probability distribution:

p
(
x̄
∣∣x) = p

(
x̄(i)

∣∣ x̄(I \{i}), x
)
p
(
x̄(I \{i})

∣∣x)
= p

(
x̄(i)

∣∣ x̄(N(i)), x(N+(i))
)
p
(
x̄(I \{i})

∣∣x),
where we have used eq. (C.1) in the last step. Then, taking the logarithm and differentiating,
only the first term remains:

∂ log p
∂x̄(i)

(
x̄
∣∣x) = ∂ log p

∂x̄(i)
(
x̄(i)

∣∣ x̄(N(i)), x(N+(i))
)
,

which proves eq. (C.2).
Reciprocally, we now prove that eq. (C.2) implies eq. (C.1). Let i ∈ I, and δi(j) = δij where

δij is the Kronecker delta. We have, by integrating the partial derivative,

log p
(
x̄
∣∣x) = log p

(
x̄− x̄(i)δi

∣∣x)− ∫ 1

0

∂ log p
∂x̄(i)

(
x̄− tx̄(i)δi

∣∣x)dt
= log p

(
x̄− x̄(i)δi

∣∣x)− ∫ 1

0
fi
(
x̄(N+(i))− tx̄(i)δi, x(N+(i))

)
dt,



Appendix C. Appendix for Chapter 4

where we have used eq. (C.2) in the last step. Note that the first term does not depend on
x̄(i), while the second term only depends on x̄(N+(i)) and x(N+(i)). This implies that when
we condition on x̄(N(i)) and x(N+(i)), the density factorizes as a term which only involves x̄(i)
and a term which does not involve x̄(i). This further implies conditional independence and thus
eq. (C.1).

C.2 Proof of equation (4.5)
Miyasawa’s remarkable result (Miyasawa, 1961), sometimes attributed to Tweedie (as commu-
nicated by Robbins, 1956), is simple to prove (Raphan and Simoncelli, 2007). The observation
distribution, p(y) is obtained by marginalizing p(y, x):

p(y) =
∫
p(y|x)p(x)dx =

∫
g(y − x)p(x)dx,

where the noise distribution g(z) is Gaussian. The gradient of the observation density is then

∇y p(y) = 1
σ2

∫
(x− y)g(y − x)p(x)dx = 1

σ2

∫
(x− y)p(y, x)dx.

Multiplying both sides by σ2/p(y) and separating the right side into two terms gives

σ2∇y p(y)
p(y) =

∫
xp(x|y)dx−

∫
yp(x|y)dx = x̂(y)− y.

C.3 Training and architecture details
Architecture. The terminal low-pass CNN and all cCNNs are “bias-free”: we remove all
additive constants from convolution and batch-normalization operations (i.e., the batch normal-
ization does not subtract the mean) (Mohan et al., 2019). All networks contain 21 convolutional
layers with no subsampling, each consisting of 64 channels. Each layer, except for the first
and the last, is followed by a ReLU non-linearity and bias-free batch-normalization. Thus, the
transformation is both homogeneous (of order 1) and translation-invariant (apart from handling
of boundaries), at each scale. All convolutional kernels in the low-pass CNN are of size 3 × 3,
resulting in a 43 × 43 RF size and 665, 856 parameters in total. Convolutional kernels in the
cCNNs are adjusted to achieve different RF sizes. For example, a 13×13 RF arises from choosing
3× 3 kernels in every 4th layer and 1× 1 (i.e., pointwise linear combinations across all channels)
for the rest, resulting in a total of 214, 144 parameters. For comparison, we also trained conven-
tional (non-multiscale) CNNs for denoising. For RF 43 × 43, we used the same architecture as
for the coarsest scale band of the multiscale denoiser: 21 bias-free convolutional layers with no
subsampling. To create smaller RFs, we followed the same strategy of setting some filter sizes
in the intermediate layer to 1× 1.

Training. For experiments shown in Figures 4.3 and 4.4, we use 202, 499 training and 100
test images of resolution 160× 160 from the CelebA dataset (Liu et al., 2015). For experiments
shown in Figures 4.5 and 4.6, we use 29, 900 train and 100 test images, drawn from the CelebA
HQ dataset (Karras et al., 2018) at 320 × 320 resolution. We follow the training procedure
described in (Mohan et al., 2019), minimizing the mean squared error in denoisingd images
corrupted by i.i.d. Gaussian noise with standard deviations drawn from the range [0, 1] (relative
to image intensity range [0, 1]). Training is carried out on batches of size 512. Note that all
denoisers are universal and blind: they are trained to handle a range of noise, and the noise
level is not provided as input to the denoiser. These properties are exploited by the sampling
algorithm, which can operate without manual specification of the step size schedule Kadkhodaie
and Simoncelli (2021).

152



Section C.4. Wavelet conditional synthesis algorithm

C.4 Wavelet conditional synthesis algorithm
Sampling from both the CNN and cCNN denoisers is achieved using a slightly modified version
of the algorithm of Kadkhodaie and Simoncelli (2021), as defined in Algorithm C.1. This method
uses only two hyperparameters, aside from initial and final noise levels, and their settings are
more forgiving than those of backward SDE discretization parameters in score-based diffusions.
A step size parameter, h ∈ [0, 1], controls the trade-off between computational efficiency and
visual quality. A stochasticity parameter, β ∈ (0, 1], controls the amount of noise injected during
the gradient ascent. For the examples in Figures 4.5 and 4.6, we chose h = 0.01, σ0 = 1, β = 0.1
and σ∞ = 0.01.

Image synthesis is initialized with a terminal low-pass image (either sampled from the as-
sociated CNN, or computed from a test image), and successively sampling from the wavelet
conditional distributions at each scale, as defined in Algorithm C.2.

Algorithm C.1 Sampling via ascent of the log-likelihood gradient from a denoiser residual
Require: denoiser f , step size h, initial noise level σ0, final noise level σ∞

1: t = 0
2: Draw x0 ∼ N (0, σ2

0Id)
3: while σt ≥ σ∞ do
4: t← t+ 1
5: dt ← f(xt−1)− xt−1 ▷ Compute the score from the denoiser residual
6: σ2

t ← ||dt||
2/N ▷ Compute the current noise level for stopping criterion

7: γ2
t =

(
(1− βh)2 − (1− h)2

)
σ2
t

8: Draw zt ∼ N (0, I)
9: xt ← xt−1 +hdt+γtzt ▷ Perform a partial denoiser step to remove a fraction of the noise

10: end while
11: return xt

Algorithm C.2 Wavelet Conditional Synthesis
Require: number of scales J , low-pass image xJ , conditional denoisers (fj)1≤j≤J , step size h,

initial noise level σ0, final noise level σ∞
1: for j ∈ {J, . . . , 1} do
2: x̄j ← DrawSample(fj(·, xj), h, σ0, σ∞) ▷ Wavelet conditional sampling
3: xj−1 ←W T (x̄j , xj) ▷ Wavelet reconstruction
4: end for
5: return x0

153





Appendix

D
Appendix for Chapter 5

Chapter content
D.1 Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 155
D.2 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
D.3 Implementation and network dimensions . . . . . . . . . . . . . . . . 156

D.1 Proof of Proposition 5.1
We first prove the following lemma:

Lemma D.1. If Φ is linear, then the Fisher ratio is decreased (or equal) and the optimal linear
classification error is increased (or equal).

If Φ is linear, then it is a matrix ∈ Rp×d. We assume that Φ has rank p (and thus p ≤ d) for
the sake of simplicity. By applying a polar decomposition on ΦΣ1/2

W , we can write

Φ = UPΣ−1/2
W ,

where U ∈ Rp×p is symmetric positive-definite and P ∈ Rp×d verifies PP T = Id. The within-
class covariance and class means of Φx are given by

ΣW = ΦΣWΦT = U2 ,

µc = Φµc = UPΣ−1/2
W µc .

The Fisher ratio of Φx is thus

C−1 Tr(Σ−1
W ΣB) = Ave

c
∥Σ−1/2

W µ̄c∥
2

= Ave
c
∥PΣ−1/2

W µc∥
2

≤ Ave
c
∥Σ−1/2

W µc∥
2

= C−1 Tr(Σ−1
W ΣB),

so Φ decreases the Fisher ratio. Besides, if (W, b) is the optimal linear classifier on Φx, then
(WΦ, b) is a linear classifier on x, and thus has a larger (or equal) error than the optimal linear
classifier on x.

Now, if Φ has a linear inverse Φ−1, we apply the Lemma D.1 to x′ = Φx and Φ′ = Φ−1 (so
that Φ′x′ = x), which concludes the proof.

Additionally, we can see from the proof of the lemma that a linear Φ preserves the Fisher
ratio if and only if ∥PΣ−1/2

W µc∥ = ∥Σ−1/2
W µc∥ for all c. This happens when Σ−1/2

W µc is in the
orthogonal of KerP = KerUP = Ker ΦΣ1/2

W , which means that Σ−1
W µc is in the orthogonal of

Ker Φ. When Φ is an orthogonal projector, the orthogonal of Ker Φ is the range of Φ.



Appendix D. Appendix for Chapter 5

D.2 Proof of Theorem 5.2
We choose x = ru with u ∼ U(Sd−1) and r ∈]0, 1] to be determined, with r and u independent.
Let us fix p ≥ d, D ∈ Rd×p, θ ∈ Rp and b ∈ R. With g(x) = θTρrtD

Tx+ b, we have

g(x) =
p∑

m=1
wmρr(r⟨u, fm⟩ − λ) + b

= r
p∑

m=1
wmρr(⟨u, fm⟩ − λ/r) + b .

If λ = 0, this gives g(x) = rθTρr(DTu) + b which is an affine function of r. Therefore, its
sign can change at most once. We choose h(x) = cos(2π∥x∥) so that

sgn(h(x)) =
{

+1 r < 1
4 or 3

4 < r

−1 1
4 < r < 3

4
.

Now g(x) is an affine function of r, so at least one of the following must occur:
sgn(g(x)) = −1 r < 1

4
sgn(g(x)) = +1 1

4 < r < 3
4

sgn(g(x)) = −1 3
4 < r

.

We finally choose r ∼ U(0, 1) and so we conclude that

P[sgn(g(x)) ̸= sgn(h(x))] ≥ 1
4 .

If λ > 0, then when r ≤ λ, we have ⟨u, fm⟩ ≤ ∥u∥∥fm∥ ≤ 1 ≤ λ/r, which means that
g(x) = b is constant. We thus choose r ∼ U(0, λ), h(x) = cos(π/λ∥x∥) and so we conclude that

P[sgn(g(x)) ̸= sgn(h(x))] = 1
2 ≥

1
4 .

D.3 Implementation and network dimensions
All networks are trained with SGD with a momentum of 0.9 and a weight decay of 10−4 for the
classifier weights, with no weight decay being applied to tight frames. The learning rate is set
to 0.01 for all networks, with a Parseval regularization parameter α = 0.0005. The batch size is
128 for all experiments. The scattering transform is based on the Kymatio package (Andreux
et al., 2020). Standard data augmentation was used on CIFAR and ImageNet: horizontal flips
and random crops for CIFAR, and random resized crops of size 224 and horizontal flips for
ImageNet. Classification error on ImageNet validation set is computed on a single center-crop
of size 224.

Non-linearity thresholds are set to λ = 1.5
√
d/p for the soft-thresholding ρt, and λ =

√
d/p

for the thresholded rectifier ρrt. Here d and p represent the dimension of the patches the
convolutional operators D and DT act on. To ensure that the fixed threshold is well adapted
to the scale of the input x, we normalize all its patches so that they have a norm of

√
d. For

1× 1 convolutional operators as in SC , this amounts to normalizing the channel vectors at each
spatial location in x.

Two-layer networks. When learning a frame contraction directly on the input image, DT is
a convolutional operator over image patches of size k× k with a stride of k/2, where k = 14 for
MNIST (d = k2 = 196) and k = 8 for CIFAR (d = 3k2 = 192). The frame DT has p output
channels, where p = 2048 for MNIST and p = 8192 for CIFAR. It thus maps each patch of
dimension d to a channel vector of size p ≥ d. Training lasts for 300 epochs, the learning rate
being divided by 10 every 70 epochs.

156



Section D.3. Implementation and network dimensions

Φ ST SP SC ResNet-18
ImageNet Parameters 25.9M 27.6M 31.2M 11.7M

Table D.1: Number of parameters of scattering architectures on ImageNet. They are dominated by
the size of the 1 × 1 orthogonal projectors Pj. Indeed, the wavelet tight frame W has a redundancy of
(L+ 1/4), whereas in ResNet strided convolutions have a redundancy of 1/2. This is due to the fact that
W is not learned. However, W comes with a known structure across channels, which is beneficial for the
analysis of the projectors Pj.

Scattering tree. We use J = 3 for MNIST and CIFAR and J = 4 for ImageNet. Each W
uses L = 8 angles. It is followed by a standardization which sets the mean and variance of every
channel to 0 and 1. We then learn a 1× 1 convolutional orthogonal projector PJ to reduce the
number of channels to d = 512. We finally apply a 1 × 1 spatial normalization, as before a
tight frame thresholding. Training lasts for 300 epochs for MNIST and CIFAR (200 epochs for
ImageNet), the learning rate being divided by 10 every 70 epochs (60 epochs for ImageNet).

Learned scattering. We use J = 4 for CIFAR and J = 6 for ImageNet. Each W uses L = 8
angles. Each Pj is an orthogonal projector which is a 1× 1 convolution. It reduces the number
of channels to dj with d1 = 64, d2 = 128, d3 = 256 and d4 = 512. For ImageNet, we also have
d5 = d6 = 512. It is followed by a normalization which sets the norm across channels of each
spatial position to

√
dj . DT

j is a 1× 1 convolutional tight frame with pj output channels, where
p1 = 1024, p2 = 2048, p3 = 4096 and p4 = 8192 for CIFAR, p1 = 512, p2 = p3 = 1024 and
p4 = p5 = p6 = 2048 for ImageNet. Training lasts for 300 epochs for CIFAR (200 epochs for
ImageNet), the learning rate being divided by 10 every 70 epochs (60 epochs for ImageNet).

Fisher ratios. Fisher ratios (eq. (5.1)) were computed using estimations of ΣW and µc on the
validation set. These estimations are unstable when the dimension d becomes large with respect
to the number of data samples. To mitigate this, the Fisher ratios across layers from Table 5.3
were computed on the train set. Fisher ratios on ImageNet from Table 5.2 were computed only
across channels, by considering each pixel as a distinct sample of the same class, in order to
reduce dimensionality.

157





Appendix

E
Appendix for Chapter 6

Chapter content
E.1 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
E.2 Proof of equation (6.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
E.3 Proof of Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
E.4 Proof of Theorem 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
E.5 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

E.1 Proof of Theorem 6.1

We have

∥xτ ∗ ψ − e
−iξ·τ (x ∗ ψ)∥∞ = ∥x ∗ (ψτ − e−iξ·τψ)∥∞ by covariance of convolution,

≤ ∥ψτ − e
−iξ·τψ∥2∥x∥2 by Young’s inequality,

and then

∥ψτ − e
−iξ·τψ∥

2
2 = 1

(2π)2

∫
[−π,π]2

|ψ̂τ (ω)− e−iξ·τ ψ̂(ω)|2dω by Plancherel,

= 1
(2π)2

∫
[−π,π]2

|e−iω·τ ψ̂(ω)− e−iξ·τ ψ̂(ω)|2dω since ψτ (u) = ψ(u− τ),

= 1
(2π)2

∫
[−π,π]2

|e−iω·τ − e−iξ·τ |2|ψ̂(ω)|2dω

≤ 1
(2π)2

∫
[−π,π]2

|(ω − ξ) · τ |2|ψ̂(ω)|2dω since x ∈ R 7→ eix is 1-Lipschitz,

≤ 1
(2π)2

∫
[−π,π]2

|ω − ξ|2|τ |2|ψ̂(ω)|2dω by Cauchy-Schwarz,

= σ2|τ |2,

which leads to the desired result of eq. (6.3):

∥xτ ∗ ψ − e
−iξ·τ (x ∗ ψ)∥∞ ≤ σ |τ | ∥x∥2.

E.2 Proof of equation (6.4)

We have
ReLU(x ∗ ψα) = ReLU(x ∗ Re(e−iαψ)) = ReLU(Re(e−iαx ∗ ψ)),



Appendix E. Appendix for Chapter 6

since x is real. By writing: x ∗ψ = |x ∗ ψ|eiφ(x∗ψ) where φ(x ∗ψ) is the phase of x ∗ψ, this leads
to

ReLU(Re(e−iαx ∗ ψ)) = ReLU(Re(|x ∗ ψ|ei(φ(x∗ψ)−α)))
= ReLU(|x ∗ ψ| cos(φ(x ∗ ψ)− α))
= |x ∗ ψ|ReLU(cos(φ(x ∗ ψ)− α)),

since ReLU activation is positive-homogeneous of degree 1. Thus,
1
2

∫ π

−π
ReLU(x ∗ ψα)dα = 1

2

∫ π

−π
|x ∗ ψ|ReLU(cos(φ(x ∗ ψ)− α))dα

= 1
2 |x ∗ ψ|

∫ π−φ(x∗ψ)

−π−φ(x∗ψ)
ReLU(cos(−α))dα with a change of variable,

= 1
2 |x ∗ ψ|

∫ π

−π
ReLU(cos(α))dα since cos is 2π periodic and even,

= 1
2 |x ∗ ψ|

∫ π/2

−π/2
cos(α)dα

= |x ∗ ψ|.

For z ∈ C, we have |z| =
√
|Re(z)|2 + |Im(z)|2 ≈ |Re(z)|+ |Im(z)| in the following sense:

1√
2

(|Re(z)|+ |Im(z)|) ≤ |z| ≤ |Re(z)|+ |Im(z)|.

We can write
|Re(z)| = ReLU(Re(z)) + ReLU(−Re(z)),
|Im(z)| = ReLU(Im(z)) + ReLU(− Im(z)).

and then, using Im(z) = Re(eiπ/2z) and eiπ = −1,

|z| ≈ ReLU(Re(z)) + ReLU(Re(e−iπz)) + ReLU(Re(e−iπ/2z)) + ReLU(Re(eiπ/2z)).
Finally,

|x ∗ ψ| = 1
2

∫ π

−π
ReLU(x ∗ ψα)dα ≈

∑
α∈{−π/2,0,π/2,π}

ReLU(Re(x ∗ ψα)),

which shows that the integral can be well approximated with a sum of 4 phases α of the complex
filter ψ.

E.3 Proof of Theorem 6.2
We first use the chain rule for the entropy:

H
(
φ(DTx)

∣∣∣ ∣∣∣DTx
∣∣∣) = H(

∣∣∣DTx
∣∣∣, φ(DTx))−H(

∣∣∣DTx
∣∣∣).

The first term is rewritten with a change of variable:

H(
∣∣∣DTx

∣∣∣, φ(DTx)) = H(DTx)−
d∑

k=1
E[log

∣∣∣(DTx)k
∣∣∣]

= H(x)−
d∑

k=1
E[log

∣∣∣(DTx)k
∣∣∣] as D is unitary and hence |det(D)| = 1,

≥ H(x)− dE
[
log
(1
d

∥∥∥DTx
∥∥∥

1

)]
by concavity,

≥ H(x)− d log
(1
d
E
[∥∥∥DTx

∥∥∥
1

])
by concavity.

160



Section E.4. Proof of Theorem 6.3

The second term is bounded using the fact that the exponential distribution E(λ) is the maximum-
entropy distribution on R+ with mean 1

λ :

H(
∣∣∣DTx

∣∣∣) ≤ d∑
k=1

H(
∣∣∣(DTx)k

∣∣∣)
≤

d∑
k=1

log
(
eE[
∣∣∣(DTx)k

∣∣∣])
≤ d log

(
e

d
E[∥DTx∥1]

)
by concavity.

Combining both inequalities and rearranging terms yields the stated bound

H
(
φ(DTx)

∣∣∣ ∣∣∣DTx
∣∣∣) ≥ H(x)− d− 2d log

(1
d
E
[∥∥∥DTx

∥∥∥
1

])
.

E.4 Proof of Theorem 6.3

We begin with the following lemma:

Lemma E.1. Let (θ1, . . . , θd) be i.i.d. uniform random variables in [0, 2π]. Then there exists a
constant Cd > 0 such that for all (ρ1, . . . , ρd) ∈ Rd, then

E
[
|
d∑

k=1
ρke

iθk |
]
≥ Cd

√√√√ d∑
k=1

ρ2
k.

This is proved by observing that the left-hand side is a norm on Rd. One can indeed verify
that it is positive definite, homogeneous and satisfies the triangle inequality. Since all norms on
Rd are equivalent, there exists a constant Cd > 0 such that

E
[
|
d∑

k=1
ρke

iθk |
]
≥ Cd

√√√√ d∑
k=1

ρ2
k.

for all (ρ1, . . . , ρd) ∈ Rd.
Going back to the proof of Theorem 6.3, and letting x′ = ρλ(DTx), we then have

E
[
∥D′Tx′∥1

∣∣∣ |x′|
]

=
d∑

m=1
E
[
|
d∑

k=1
D′
k,mx

′
k|
∣∣∣∣∣ |x′|

]

≥ Cd
d∑

m=1

√√√√ d∑
k=1
|D′

k,m|
2|x′

k|
2 by the above lemma,

≥ Cd
d∑

m=1

d∑
k=1
|D′

k,m|
2|x′

k| by concavity, because
d∑

k=1
|D′

k,m|
2 = 1,

= Cd

∥∥∥x′
∥∥∥

1
because

d∑
m=1
|D′

k,m|
2 = 1.

Taking the expectation finishes the proof:

E
[
∥D′Tx′∥1

]
≥ CdE

[
∥x′∥1

]
. (E.1)

161



Appendix E. Appendix for Chapter 6

j 1 2 3 4 5 6 7 8 9 10 11
CIFAR-10 cj 64 128 256 512 512 512 512 512 - - -
ImageNet cj 32 64 64 128 256 512 512 512 512 512 256

Table E.1: Number cj of complex output channels of Pj, 1 ≤ j ≤ J . The total number of projectors is
J = 8 for CIFAR and J = 11 for ImageNet.

PCScat PCScat + skip ResNet
CIFAR-10 41.6 83.1 0.27
ImageNet 36.0 62.8 11.7

Table E.2: Number of real parameters (in millions) of Learned Scattering network architectures. A
complex parameter is counted as two real parameters.

E.5 Experimental details

Channel operators. In all experiments we set P0 = Id, and factorize the classifier with an
additional complex 1 × 1 convolutional operator PJ , which reduces the dimension before all
channels and positions are linearly combined. The architectures implemented are thus also
written as ∏J

j=1 PjρW , where ρ is the non-linearity. Each operator (Pj)1≤j≤J is preceded by a
standardization. It sets the complex mean µ = E[z] of every channel to zero, and the real variance
σ2 = E[|z|2] of every channel to one. This is similar to a complex 2D batch-normalization layer
(Ioffe and Szegedy, 2015), but without learned affine parameters. Each operator (Pj)1≤j≤J is
additionally followed by a spatial divisive normalization (Wainwright et al., 2001a), similarly to
the local response normalization of Krizhevsky et al. (2012). It sets the norm across channels of
each spatial position to one. The sizes of the (Pj)j are specified in Table E.1.

The total numbers of parameters for each architecture are specified in Table E.2. Learned
Scattering with phase collapse have a large number of parameters compared to ResNet, despite
the comparable width. This is because the predefined wavelet operator W expands the dimension
by a factor of L+ 1, which means that the input dimension of the learned (Pj)j is higher than
in ResNet. The skip-connection further increases this input dimension by a factor of 2.

Spatial filters. We use elongated Morlet filters for the L complex band-pass filters (gℓ)ℓ which
are rotated versions of a mother wavelet g: gℓ(u) = g(r−πℓ/Lu), with rθ the rotation by angle θ.
The mother wavelet g is defined as

g(u) = σ2

2π/s2 (eiξ·u −K)e−u·Σu/2 with Σ =
(
σ2 0
0 σ2s2

)
, (E.2)

Its parameters are its center frequency ξ = ((3π/4)/2γ , 0), its bandwidth σ = 1.25 × 2−γ , and
its slant s = 0.5, where 2γ designates the scale of the band-pass filter and is to be adjusted.

g is rotated along L = 8 angles for Imagenet and L = 4 angles for CIFAR: θℓ = (πℓ/L)1≤ℓ≤L.
The (gℓ)ℓ are then discretized for numerical computations, and K is adjusted so that they have
a zero mean.

Finally, we use for the low frequency g0 a Gaussian window

g0(u) = σ2

2πe
−σ2∥u∥2

2/2.

The filters are implemented with the Kymatio package (Andreux et al., 2020).

162



Section E.5. Experimental details

Intermediate scales 2j/2 are obtained by applying a subsampling by 2 after each block of
2 layers. This introduces intermediate scales and generates a wavelet filterbank with 2 scales
per octave: the filters are designed so that when j low-pass filters and one band-pass filter are
cascaded, with a subsampling every 2 layers, the scale of the resulting wavelet is 2j/2.

Each block comprises in its first layer a low-frequency filter g1
0 with γ = −1/2 and band-

pass filters with γ = 0. In the second layer, we use the same low-frequency filter g2
0 = g1

0 with
γ = −1/2. The band-pass filters g2

ℓ are obtained with parameters ξ′ = (π/
√

2, 0), σ′ = 1.25
√

2/3,
and s′ =

√
0.2.

For CIFAR experiments, the J = 8 layers are grouped in 4 successive blocks of 2 layers.
For ImageNet experiments, the first layer consists of band-pass elongated Morlet filters gℓ and
a low-pass Gaussian window g0 with γ = 0, followed by a subsampling of 2. The 10 following
layers are grouped in 5 blocks of 2 layers.

Optimization. We use the optimizer SGD with an initial learning rate of 0.01, a momentum
of 0.9, a weight decay of 0.0001, and a batch size of 128. The classifier is preceded by a 2D batch-
normalization layer. We use traditional data augmentation: horizontal flips and random crops
for CIFAR, random resized crops of size 224 and horizontal flips for ImageNet. Classification
error on ImageNet validation set is computed on a single center crop of size 224. On CIFAR,
training lasts for 300 epochs and the learning rate is divided by 10 every 70 epochs. On ImageNet,
training lasts for 150 epochs and the learning rate is divided by 10 every 45 epochs.

163





Appendix

F
Appendix for Chapter 7

Chapter content
F.1 Proof of Theorem 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

F.1.1 Proof outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
F.1.2 Proof of Lemma F.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
F.1.3 Proof of Lemma F.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
F.1.4 Proof of Lemma F.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
F.1.5 Proof of Lemma F.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

F.2 Proof of Theorem 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
F.3 Proof of Theorem 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
F.4 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

F.1 Proof of Theorem 7.1

We prove a slightly more general version of Theorem 7.1 which we will need in the proof of
Theorem 7.2. We allow the input x to be in a possibly infinite-dimensional Hilbert space H0 (the
finite-dimensional case is recovered with H0 = Rd0). We shall assume that the random feature
distribution π has bounded second- and fourth-order moments in the sense of Section 7.2.2: it
admits a bounded uncentered covariance operator C = Ew∼π[wwT] and Ew∼π[(wTTw)2] < +∞
for every trace-class operator T on H0. Without loss of generality, we assume that the non-
linearity ρ is 1-Lipschitz and that ρ(0) = 0. These last assumptions simplify the constants
involved in the analysis. They can be satisfied for any L-Lipschitz non-linearity ρ by replacing
it with (ρ− ρ(0))/L, which does not change the linear expressivity of the network.

We give the proof outline in Appendix F.1.1. It relies on several lemmas, which are proven
in Appendices F.1.2 to F.1.5. We write ∥·∥∞ the operator norm, ∥·∥2 the Hilbert-Schmidt norm,
and ∥·∥1 the nuclear (or trace) norm.

F.1.1 Proof outline

The convergence of the activations φ̂(x) to the feature vector φ(x) relies on the convergence of
the empirical kernel k̂ to the asymptotic kernel k. We thus begin by reformulating the mean-
square error Ex[∥Â φ̂(x)− φ(x)∥2H ] in terms of the kernels k̂ and k. More precisely, we will
consider the integral operators T̂ and T associated to the kernels. These integral operators are
the infinite-dimensional equivalent of Gram matrices (k(xi, xi′))1≤i,i′≤n.

Let µ be the distribution of x. We define the integral operator T : L2(µ)→ L2(µ) associated
to the asymptotic kernel k as

(Tf)(x) = Ex′

[
k(x, x′) f(x′)

]
,



Appendix F. Appendix for Chapter 7

where x′ is an i.i.d. copy of x and µ is the law of x. Similarly, we denote T̂ the integral operator
defined by k̂. Their standard properties are detailed in the next lemma. Moreover, the definition
of T̂ entails that it is the average of d1 i.i.d. integral operators defined by the individual random
features (wi)i≤d1

of φ̂. The law of large numbers then implies a mean-square convergence of T̂
to T , as proven in the following lemma.

Lemma F.1. T and T̂ are trace-class non-negative self-adjoint operators on L2(µ), with

tr(T ) ≤ ∥C∥∞ Ex[∥x∥2].

The eigenvalues of T and T̂ are the same as their respective activation covariance matrices
Ex[φ(x)φ(x)T] and Ex[φ̂(x) φ̂(x)T]. Besides, it holds that EW [T̂ ] = T and√

EW
[
∥T̂ − T∥22

]
=
√
EW,x,x′

[
|k̂(x, x′)− k(x, x′)|2

]
= c d

−1/2
1 ,

with some constant c < +∞.

We defer the proof, which relies on standard properties and a direct calculation of the variance
of T̂ around its mean T , to Appendix F.1.2. In the following, we shall write c = κ ∥C∥∞ Ex[∥x∥2]
to simplify calculations for the proof of Theorem 7.2, where C = Ew∼π[wwT] is the uncentered
covariance of π, and κ is a constant. When π is Gaussian, Appendix F.1.2 further shows that
κ ≤
√

3.
The mean-square error between φ̂ and φ after alignment can then be expressed as a different

distance between T̂ and T , as proven in the next lemma.

Lemma F.2. The alignment error between φ̂ and φ is equal to the Bures-Wasserstein distance
BW between T̂ and T :

min
Â∈O(d1)

Ex
[
∥Â φ̂(x)− φ(x)∥2H

]
= BW(T̂ , T )2.

The Bures-Wasserstein distance (Bhatia et al., 2019) is defined, for any trace-class non-
negative self-adjoint operators T̂ and T , as

BW(T̂ , T )2 = min
Â∈O

(
L

2(µ)
) ∥Â T̂ 1/2 − T 1/2∥22 = tr

(
T̂ + T − 2

(
T 1/2T̂ T 1/2

)1/2
)
.

The minimization in the first term is done over unitary operators of L2(µ), and can be solved in
closed-form with a singular value decomposition of T 1/2T̂ 1/2 as in eqs. (7.3) and (7.4). A direct
calculation then shows that the minimal value is equal to the expression in the second term, as
in eq. (7.5). The Bures-Wasserstein distance arises in optimal transport as the Wasserstein-2
distance between two zero-mean Gaussian distributions of respective covariance operators T̂ and
T , and in quantum information as the Bures distance, a non-commutative generalization of the
Hellinger distance. We refer the interested reader to Bhatia et al. (2019) for more details. We
defer the proof of Lemma F.2 to Appendix F.1.3.

It remains to establish the convergence of T̂ towards T for the Bures-Wasserstein distance,
which is a distance on the square roots of the operators. The main difficulty comes from the
fact that the square root is Lipschitz only when bounded away from zero. This lack of regularity
in the optimization problem can be seen from the fact that the optimal alignment rotation
Â is obtained by setting all singular values of some operator to one, which is unstable when
this operator has vanishing singular values. We thus consider an entropic regularization of the
underlying optimal transport problem over Â with a parameter λ > 0 that will be adjusted
with d1. It penalizes the entropy of the coupling so that singular values smaller than λ are not
amplified. It leads to a bound on the Bures-Wasserstein distance, as shown in the following
lemma.

166



Section F.1. Proof of Theorem 7.1

Lemma F.3. Let T̂ and T be two trace-class non-negative self-adjoint operators. For any λ > 0,
we have

BW(T̂ , T )2 ≤ ∥T∥2∥T̂ − T∥2
λ

+ tr(T̂ − T ) + 2 tr
(
T + λ Id−

(
T 2 + λ2 Id

)1/2
)
. (F.1)

We defer the proof to Appendix F.1.4.
The first two terms in eq. (F.1) are controlled in expectation with Lemma F.1. The last

term, when divided by λ, has a similar behavior to another quantity which arises in least-
squares regression, namely the degrees of freedom tr(T (T + λ Id)−1) (Hastie and Tibshirani,
1987; Caponnetto and De Vito, 2007). It can be calculated by assuming a decay rate for the
eigenvalues of T , as done in the next lemma.

Lemma F.4. Let T be a trace-class non-negative self-adjoint operator whose eigenvalues satisfy
λm ≤ cm

−α for some α > 1 and c > 0. Then it holds:

tr
(
T + λ Id−

(
T 2 + λ2 Id

)1/2
)
≤ c′ λ1−1/α,

where the constant c′ = c
1/α

1−1/α .

The proof is in Appendix F.1.5.
We now put together Lemmas F.1 to F.4. We have for any λ > 0,

EW,x
[
∥Â φ̂(x)− φ(x)∥2H

]
= EW

[
BW(T̂ , T )2

]
≤ κ ∥C∥2∞Ex[∥x∥2]2

λ
√
d1

+ 2c1/α

1− 1/αλ
1− 1

α ,

where we have used the Cauchy-Schwarz inequality to bound EW [∥T̂ − T∥2] ≤
√
EW [∥T̂ − T∥22]

and the fact that ∥T∥2 ≤ trT ≤ ∥C∥∞ Ex[∥x∥2]. We then optimize the upper bound with
respect to λ by setting

λ =
(

2c1/α√d1

κ∥C∥2∞Ex[∥x∥2]2

)−α/(2α−1)

,

which yields

EW,x
[
∥Â φ̂(x)− φ(x)∥2H

]
≤ c′′ d

−(α−1)/(4α−2)
1 ,

with a constant

c′′ = 2κ(α−1)/(2α−1)

(α− 1)/(2α− 1)

(
c

∥C∥∞Ex[∥x∥2]

)1/(2α−1)

∥C∥∞ Ex[∥x∥2].

Finally, the function f̂ can be written

f̂(x) = ⟨ÂTθ, φ̂(x)⟩ = ⟨θ, Â φ̂(x)⟩H ,

so that

|f̂(x)− f(x)|2 = |⟨θ, Â φ̂(x)− φ(x)⟩H |2 ≤ ∥θ∥2H∥Â φ̂(x)− φ(x)∥2H .

Rewriting ∥θ∥H = ∥f∥H, assuming that θ is the minimum-norm vector such that f(x) =
⟨θ, φ(x)⟩H , and using the convergence of Â φ̂ towards φ then yields

EW,x
[
|f̂(x)− f(x)|2

]
≤ c′′∥f∥2H d

−(α−1)/(4α−2)
1 .

167



Appendix F. Appendix for Chapter 7

F.1.2 Proof of Lemma F.1

We define the linear operator Φ: L2(µ)→ H by

Φf = Ex[f(x)φ(x)].

Its adjoint ΦT : H → L2(µ) is then given by

(ΦTu)(x) = ⟨u, φ(x)⟩,

so that T = ΦTΦ. This proves that T is self-adjoint and non-negative. On the other hand, we
have ΦΦT = Ex[φ(x)φ(x)T] the uncentered covariance matrix of the feature map φ associated to
the kernel k. This shows that T and this uncentered covariance matrix have the same eigenvalues.

Moreover, we have

tr(T ) = Ex[k(x, x)] = tr
(
ΦTΦ

)
= ∥Φ∥22 = Ex

[
∥φ(x)∥2

]
,

and using the definition of k,

Ex[k(x, x)] = Ex,w
[
ρ(⟨x,w⟩)2

]
≤ Ex,w

[
|⟨x,w⟩|2

]
= tr

(
C Ex

[
xxT

])
≤ ∥C∥∞ Ex

[
∥x∥2

]
,

where w ∼ π independently from x, |ρ(t)| ≤ |t| by assumption on ρ, and the last step follows
from Hölder’s inequality. This proves that T is trace-class and Φ is Hilbert-Schmidt, with an
explicit upper bound on the trace.

The above remarks are also valid for T̂ with an appropriate definition of Φ̂ : L2(µ) → Rd1 .
We have EW [T̂ ] = T because EW [k̂(x, x′)] = k(x, x′). Therefore, tr(T̂ ) = ∥Φ̂∥22 is almost surely
finite because

EW [tr(T̂ )] = tr(T ) < +∞.

Let k̂i(x, x′) = ρ(⟨x,wi⟩) ρ(⟨x′, wi⟩) where (wi)i≤dj
are the rows of W , and T̂i the associated

integral operators. The T̂i are i.i.d. with EW [T̂i] = T as for T̂ , and we have T̂ = d−1
1
∑d1
i=1 T̂i. It

then follows by standard variance calculations that

EW
[
∥T̂ − T∥22

]
= 1
d1

(
EW

[
∥T̂1∥

2
2
]
− ∥T∥22

)
= c

d1
,

with a constant c such that

c ≤ EW
[
∥T̂1∥

2
2
]
≤ EW

[
tr(T̂1)2

]
= EW

[
Ex
[
ρ(⟨x,w1⟩)2

]2]
≤ EW

[
Ex
[
|⟨x,w1⟩|

2
]2]

.

We then have, using the assumption on the fourth moments of π,

EW
[
Ex
[
|⟨x,w1⟩|

2
]2]

= EW
[(
wT

1 Ex
[
xxT

]
w1
)2
]
< +∞,

because trEx[xxT] = Ex[∥x∥2] < +∞. When π is Gaussian, we further have

EW
[
Ex
[
|⟨x,w1⟩|

2
]2]

=
(
tr
(
C Ex

[
xxT

]))2
+ 2 tr

((
C Ex

[
xxT

])2
)

≤ 3
(
tr
(
C Ex

[
xxT

]))2

≤ 3 ∥C∥2∞ Ex
[
∥x∥2

]2
,

by classical fourth-moment computations of Gaussian random variables.

168



Section F.1. Proof of Theorem 7.1

F.1.3 Proof of Lemma F.2

The alignment error can be rewritten in terms of the linear operators Φ and Φ̂ defined in
Appendix F.1.2:

Ex
[
∥Â φ̂(x)− φ(x)∥2H

]
= ∥Â Φ̂− Φ∥22.

We then expand

∥Â Φ̂− Φ∥22 = ∥Φ̂∥22 + ∥Φ∥22 − 2 tr
(
ΦTÂΦ̂

)
.

The first two terms are respectively equal to tr T̂ and trT per Appendix F.1.2. The alignment
error is minimized with Â = UV T from the SVD decomposition (Bhatia et al., 2019):

ΦΦ̂T = Ex
[
φ(x) φ̂(x)T

]
= USV T,

for which we then have

tr
(
ΦTÂΦ̂

)
= tr

(
Φ̂ΦTÂ

)
= tr

(
V SUTUV T

)
= tr(S).

This can further be written

tr(S) = tr
((
US2UT

)1/2
)

= tr
((

ΦΦ̂TΦ̂ΦT
)1/2

)
= tr

((
ΦT̂ΦT

)1/2
)
.

To rewrite this in terms of T , we perform a polar decomposition of Φ: there exists a unitary
operator P : L2(µ)→ H such that Φ = PT 1/2. We then have

tr
((

ΦT̂ΦT
)1/2

)
= tr

((
PT 1/2T̂ T 1/2PT

)1/2
)

= tr
(
P
(
T 1/2T̂ T 1/2

)1/2
PT
)

= tr
((
T 1/2T̂ T 1/2

)1/2
)
.

Putting everything together, we have

Ex
[
∥Â φ̂(x)− φ(x)∥2H

]
= tr

(
T̂ + T − 2

(
T 1/2T̂ T 1/2

)1/2
)
.

F.1.4 Proof of Lemma F.3

The Bures-Wasserstein distance can be rewritten as a minimum over contractions rather than
unitary operators:

BW(T̂ , T )2 = min
∥Â∥∞≤1

tr
(
T̂ + T − 2T 1/2ÂT̂ 1/2

)
,

which holds because of Hölder’s inequality:

tr
(
T 1/2ÂT̂ 1/2

)
= tr

(
T̂ 1/2T 1/2Â

)
≤ ∥T̂ 1/2T 1/2∥1∥Â∥∞ = tr

((
T 1/2T̂ T 1/2

)1/2
)
∥Â∥∞.

Rather than optimizing over contractions Â, which leads to a unitary Â, we shall use a non-
unitary Â with ∥Â∥∞ < 1.

169



Appendix F. Appendix for Chapter 7

We introduce an “entropic” regularization: let λ > 0, and define

BWλ(T̂ , T )2 = min
∥Â∥∞≤1

tr
(
T̂ + T − 2T 1/2ÂT̂ 1/2

)
+ λ log det

((
Id−ÂTÂ

)−1
)
.

The second term corresponds to the negentropy of the coupling in the underlying optimal trans-
port formulation of the Bures-Wasserstein distance. It can be minimized in closed-form by
calculating the fixed-point of Sinkhorn iterations (Janati et al., 2020), or with a direct SVD
calculation as in Appendix F.1.3. It is indeed clear that the minimum is attained at some
Âλ = USλV

T with T 1/2T̂ 1/2 = USV T, and this becomes a separable quadratic problem over
the singular values Sλ. We thus find

Sλ =
((
S2 + λ2 Id

)1/2
− λ Id

)
S−1,

Âλ =
((
T 1/2T̂ T 1/2 + λ2 Id

)1/2
− λ Id

)
T− 1

2 T̂− 1
2 ,

and one can verify that we indeed have ∥Âλ∥∞ < 1. When plugged in the original distance, it
gives the following upper bound:

BW(T̂ , T )2 ≤ tr
(
T̂ + T − 2

((
T 1/2T̂ T 1/2 + λ2 Id

)1/2
− λ Id

))
.

The term λ2 Id in the square root makes this a Lipschitz function of T̂ . Indeed, define the
function g by

g(T̂ ) = tr
((
T 1/2T̂ T 1/2 + λ2 Id

)1/2
− λ Id

)
.

Standard calculations (Bhatia et al., 2019; Janati et al., 2020) then show that

∇g(T̂ ) = 1
2T

1/2
(
T 1/2T̂ T 1/2 + λ2 Id

)−1/2
T 1/2.

It implies that

0 ≼ ∇g(T̂ ) ≼ 1
2λT,

where have used that T 1/2T̂ T 1/2 ≽ 0 in the second inequality, and finally,

∥∇g(T̂ )∥2 ≤
∥T∥2
2λ .

This last inequality follows from

∥∇g(T̂ )∥22 = tr
(
∇g(T̂ )T∇g(T̂ )

)
≤ tr

(
∇g(T̂ )T 1

2λT
)
≤ ∥∇g(T̂ )∥2

∥T∥2
2λ ,

where we have used the operator-monotonicity of the map M 7→ tr
(
∇g(T̂ )TM

)
, which holds

because ∇g(T̂ ) ≽ 0.
Using the bound on the Lipschitz constant of g, we can then write

|g(T̂ )− g(T )| ≤ ∥T∥22λ ∥T̂ − T∥2.

This leads to an inequality on the Bures-Wasserstein distance:

BW(T̂ , T )2 ≤ tr(T̂ + T )− 2g(T̂ )
= 2(tr(T )− g(T )) + tr(T̂ − T )− 2(g(T̂ )− g(T ))

≤ 2(tr(T )− g(T )) + tr(T̂ − T ) + ∥T∥2
λ
∥T̂ − T∥2,

which concludes the proof.

170



Section F.2. Proof of Theorem 7.2

F.1.5 Proof of Lemma F.4

We have

tr
(
T + λ Id−

(
T 2 + λ2 Id

)1/2
)

=
∞∑
m=1

(
λm + λ−

√
λ2
m + λ2

)

We have the following inequality

λm + λ−
√
λ2
m + λ2 ≤ min(λm, λ),

by using
√
λ2
m + λ2 ≥ max(λm, λ).

We have λm ≤ cm−α for all m. We split the sum at M = ⌊(λ/c)−1/α⌋ (so that cM−α ≈ λ),
and we have

M∑
m=1

(
λm + λ−

√
λ2
m + λ2

)
≤

M∑
m=1

λ = Mλ,

∞∑
m=M+1

(
λm + λ−

√
λ2
m + λ2

)
≤

∞∑
m=M+1

λm ≤ c
∞∑

m=M+1
m−α ≤ cM

1−α

α− 1 ,

Finally,

∞∑
1=1

(
λm + λ−

√
λ2
m + λ2

)
≤
(
λ

c

)−1/α
λ+ c

α− 1

(
λ

c

)1−1/α
= c1/α

1− 1/α λ
1−1/α.

F.2 Proof of Theorem 7.2

In this section, expectations are taken with respect to both the weights W1, . . . ,Wj and the input
x. We remind that Wj = W ′

j Âj−1 with W ′
j having i.i.d. rows w′

ji ∼ πj . Let Cj = Ewj∼πj
[wjwT

j ]
be the uncentered covariance of πj . Similarly to Appendix F.1, we assume without loss of
generality that ρ is 1-Lipschitz and that ρ(0) = 0.

Let ϕ̃j = ρW ′
j ϕj−1. Let Aj ∈ O(dj) to be adjusted later. We have by definition of Âj :√

E
[
∥Âj ϕ̂j(x)− ϕj(x)∥2

]
≤
√
E
[
∥Aj ϕ̂j(x)− ϕj(x)∥2

]
≤
√
E
[
∥Ajϕ̂j(x)−Ajϕ̃j(x)∥2

]
+
√
E
[
∥Ajϕ̃j(x)− ϕj(x)∥2

]
, (F.2)

where the last step follows by the triangle inequality. We now bound separately each term.
To bound the first term, we compute the Lipschitz constant of ρW ′

j (in expectation). For
any z, z′ ∈ Hj−1, we have:

E
[
∥ρW ′

jz − ρW
′
jz

′∥2
]
≤ 1
dj

E
[
∥W ′

j(z − z′)∥2
]

= 1
dj

dj∑
i=1

E
[
|⟨z − z′, w′

ji⟩|
2]

= (z − z′)TCj(z − z′)
≤ ∥Cj∥∞∥z − z

′∥2,

171



Appendix F. Appendix for Chapter 7

where we have used the fact that ρ is 1-Lipschitz, and have made explicit the normalization
factor of d−1

j . We can therefore bound the first term in eq. (F.2):√
E
[
∥Ajϕ̂j(x)−Ajϕ̃j(x)∥2

]
=
√
E
[
∥(ρW ′

j)Âj−1ϕ̂j−1(x)− (ρW ′
j)ϕj−1(x)∥2

]
≤ ∥Cj∥

1/2
∞

√
E
[
∥Âj−1ϕ̂j−1(x)− ϕj−1(x)∥2

]
.

We define Aj , which was arbitrary, as the minimizer of the second term in eq. (F.2) over
O(dj). We can then apply Theorem 7.1 to z = ϕj−1(x). Indeed, Ez[φj(z)φj(z)T] = Ex[ϕj(x)ϕj(x)T]
is trace-class with eigenvalues λj,m = O(m−αj ), and πj has bounded second- and fourth-order
moments. Therefore, there exists a constant cj such that√

E
[
∥Ajϕ̃j(x)− ϕj(x)∥2

]
=
√
E
[
∥Aj ρW

′
j ϕj−1(x)− φj ϕj−1(x)∥2

]
≤ ∥Cj∥

1/2
∞

√
E[
∥∥ϕj−1(x)

∥∥2] cj d
−ηj/2
j ,

with ηj = αj−1
2(2αj−1) . We have made explicit the factors ∥Cj∥1/2

∞

√
E[
∥∥ϕj−1(x)

∥∥2] in the constant
coming from Theorem 7.1to simplify the expressions in the sequel. We can further bound√
E[∥ϕj−1(x)∥2] by iteratively applying Lemma F.1 from Appendix F.1:

√
E[∥ϕj−1(x)∥2] ≤ ∥Cj−1∥

1/2
∞ · · · ∥C1∥

1/2
∞

√
E[∥x∥2].

We thus have shown:√
E
[
∥Âj ϕ̂j(x)− ϕj(x)∥2

]
≤ ∥Cj∥

1/2
∞

√
E
[
∥Âj−1ϕ̂j−1(x)− ϕj−1(x)∥2

]
+ ∥Cj∥1/2

∞ · · · ∥C1∥
1/2
∞

√
E[∥x∥2] cj d

−ηj/2
j .

It then follows by induction:
√
E
[
∥Âj ϕ̂j(x)− ϕj(x)∥2

]
≤ ∥Cj∥

1/2
∞ · · · ∥C1∥

1/2
∞

√
E[∥x∥2]

j∑
ℓ=1

cℓ d
−ηℓ/2
ℓ .

We conclude like in the proof of Theorem 7.1:√
E
[
|f̂(x)− f(x)|2

]
≤ ∥f∥HJ

∥CJ∥
1/2
∞ · · · ∥C1∥

1/2
∞

√
E[∥x∥2]

J∑
j=1

cj d
−ηj/2
j .

We finally show the convergence of the kernels. Let k̃j be the kernel defined by the feature
map ϕ̃j . Expectations are now also taken with respect to x′, an i.i.d. copy of x. We have by the
triangle inequality:

|k̂j(x, x′)− kj(x, x′)| ≤ |k̂j(x, x′)− k̃j(x, x′)|+ |k̃j(x, x′)− kj(x, x′)|. (F.3)

For the first term on the right-hand side:

|k̂j(x, x′)− k̃j(x, x′)| = |⟨ϕ̂j(x), ϕ̂j(x′)⟩ − ⟨ϕ̃j(x), ϕ̃j(x′)⟩|
≤ |⟨ϕ̂j(x), ϕ̂j(x′)− ϕ̃j(x′)⟩+ ⟨ϕ̂j(x)− ϕ̃j(x), ϕ̃j(x′)⟩|
≤ ∥ϕ̂j(x)∥∥ϕ̂j(x′)− ϕ̃j(x′)∥+ ∥ϕ̃j(x′)∥∥ϕ̂j(x)− ϕ̃j(x)∥.

172



Section F.3. Proof of Theorem 7.3

We thus have, because x, x′ are i.i.d.,√
E
[
|k̂j(x, x′)− k̃j(x, x′)|2

]
≤
√
E
[
∥ϕ̂j(x)∥2

]
E
[
∥ϕ̂j(x′)− ϕ̃j(x′)∥2

]
+
√
E
[
∥ϕ̃j(x′)∥2

]
E
[
∥ϕ̂j(x)− ϕ̃j(x)∥2

]
.

Using the Lipschitz constant of ρW ′
j in expectation as above:√

E
[
|k̂j(x, x′)− k̃j(x, x′)|2

]
≤ 2∥Cj∥∞

√
E
[
∥ϕj−1(x)∥2

]
E
[
∥ϕ̂j−1(x)− ϕj−1(x)∥2

]
.

The factors on the right-hand side can be bounded using the above, to yield√
E
[
|k̂j(x, x′)− k̃j(x, x′)|2

]
≤ 2∥Cj∥∞ · · · ∥C1∥∞E[∥x∥2]

j−1∑
ℓ=1

cℓ d
−ηℓ/2
ℓ .

The second term on the right-hand side of eq. (F.3) can be bounded with Theorem 7.1
applied to z = ϕj−1(x) as before:√

E
[
|k̃j(x, x′)− kj(x, x′)|2

]
≤ κj∥Cj∥∞ · · · ∥C1∥∞E[∥x∥2] d−1/2

j .

where we have again used the upper bound on
√
E[
∥∥ϕj−1(x)

∥∥2].
We thus have shown that√

E
[
|kj(x, x′)− kj(x, x′)|2

]
≤ ∥Cj∥∞ · · · ∥C1∥∞E[∥x∥2]

2
j−1∑
ℓ=1

cℓ d
−ηℓ/2
ℓ + κj d

−1/2
j

.
F.3 Proof of Theorem 7.3
We prove the result by induction on the layer index j. We initialize with ϕ0(x) = x, which
admits an orthogonal representation σ0(g) = g. Now suppose that ϕj−1 admits an orthogonal
representation σj−1. Let w ∼ πj , we have that σj−1(g)Tw ∼ πj for all g ∈ G by hypothesis.
When πj = N (0, Cj), this is equivalent to σj−1(g)TCjσj−1(g) = Cj , i.e. σj−1(g)Cj = Cjσj−1(g).
We begin by showing that ϕj then admits an orthogonal representation σj .

We have

ϕj(gx) = φj(ϕj−1(gx)) = φj(σj−1(g)ϕj−1(x)).

For simplicity, here we define the feature map φj with φj(z)(w) = ρ(⟨z, w⟩) with Hj = L2(πj)
(the result of the theorem does however not depend on this choice, as all feature maps are related
by a rotation). Then,

ϕj(gx)(w) = ρ
(〈
σj−1(g)ϕj−1(x), w

〉)
= ρ(⟨ϕj−1(x), σj−1(g)Tw⟩).

For each g ∈ G, we thus define the operator σj(g) by its action on ψ ∈ Hj :

(σj(g)ψ)(w) = ψ(σj−1(g)Tw).

It is obviously linear, and bounded as
∥∥σj(g)

∥∥
∞ = 1:

∥∥σj(g)ψ
∥∥2
Hj

= Ew
[
ψ(σj−1(g)Tw)2

]
= Ew

[
ψ(w)2

]
= ∥ψ∥2Hj

,

173



Appendix F. Appendix for Chapter 7

where we have used that σj−1(g)Tw ∼ w. We further verify that σj(gg′) = σj(g)σj(g′):

(σj(gg′)ψ)(w) = ψ(σj−1(gg′)Tw) = ψ(σj−1(g′)Tσj−1(g)Tw)
= (σj(g′)ψ)(σj−1(g)Tw) = (σj(g)σj(g′)ψ)(w).

We can thus write ϕj(gx) = σj(g)ϕj(x), which shows that ϕj admits a representation.
It remains to show that σj(g) is orthogonal. The adjoint σj(g)T is equal to σj(gT):〈
σj(g)ψ,ψ′

〉
Hj

= Ew
[
ψ(σj−1(g)Tw)ψ′(w)

]
= Ew

[
ψ(w)ψ′(σj−1(g)w)

]
=
〈
ψ, σj(gT)ψ′

〉
Hj

,

where we have used σj−1(g)T = σj−1(gT) since σj−1 is a group homomorphism. It is then
straightforward that σj(g)σj(g)T = σj(g)Tσj(g) = Id by using again the fact that σj is a group
homomorphism. This proves that σj(g) ∈ O(Hj).

We finally show that the rainbow kernel kj is invariant. We have

kj(gx, gx′) =
〈
ϕj(gx), ϕj(gx′)

〉
Hj

=
〈
σj(g)ϕj(x), σj(g)ϕj(x′)

〉
Hj

=
〈
ϕj(x), ϕj(x′)

〉
Hj

= kj(x, x′),

which concludes the proof.

F.4 Experimental details
Normalization. In all the networks considered in this paper, after each non-linearity ρ, a
2D batch-normalization layer (Ioffe and Szegedy, 2015) without learned affine parameters sets
the per-channel mean and variance across space and data samples to 0 and 1 respectively.
After training, we multiply the learned standard deviations by 1/

√
dj and the learned weight

matrices Lj+1 by
√
dj as per our normalization conventions. This ensures that Ex[ϕ̂j(x)] = 0 and

Ex[∥ϕ̂j(x)∥2] = 1, which enables more direct comparisons between networks of different sizes.
When evaluating activation convergence for ResNet-18, we explicitly compute these expectations
on the training set and standardize the activations ϕ̂j(x) after training for additional numerical
stability. When sampling weights from the Gaussian rainbow model, the mean and variance
parameters of the normalization layers are computed on the training set before alignment and
sampling of the next layer.

Scattering networks. We use the learned scattering architecture of Chapter 6, with several
simplifications based on the setting.

The prior operator Pj performs a convolution of every channel of its input with predefined
filters: one real low-pass Gabor filter ϕ (a Gaussian window) and 4 oriented Morlet wavelets ψθ
(complex exponentials localized with a Gaussian window). Pj also implements a subsampling
by a factor 2 on even layer indices j, with a slight modification of the filters to compute wavelet
coefficients at intermediate scales. See Appendix E.5 for a precise definition of the filters.
The learned weight matrices Lj are real for CIFAR-10 experiments, and complex for ImageNet
experiments.

We impose a commutation property between Pj and Lj , so that we implement Wj = Pj Lj .
It is equivalent to having Wj = Lj Pj , with the constraint that Lj is applied pointwise with
respect to the channels created by Pj . The non-linearity ρ is a complex modulus, which is only
applied on the high-frequency channels. A scattering layer writes:

ρWjz =
(
Ljz ∗ ϕ,

∣∣Ljz ∗ ψθ∣∣)θ.
174



Section F.4. Experimental details

The input (and therefore output) of Lj are then both real when Lj is real.
We apply a pre-processing ρP0 to the input x before feeding it to the network. The fully-

connected classifier θ is preceded with a learned 1×1 convolution LJ+1 which reduces the channel
dimension. The learned scattering architecture thus writes:

f̂(x) = θTLJ+1 ρPJLJ · · · ρP1L1 ρP0x.

The number of output channels of Lj is given in Table F.1.
As explained above, we include a 2D batch-normalization layer without learned affine pa-

rameters after each non-linearity ρ, as well as before the classifier θ. Furthermore, after each
operator Lj , a divisive normalization sets the norm along channels at each spatial location to
1 (except in Figures 7.4, 7.5 and 7.10). There are no learned biases in the architecture beyond
the unsupervised channel means.

The non-linearity ρ includes a skip-connection in Figures 7.5 and 7.9, in which case a scat-
tering layer computes

ρWjz =
(
Ljz ∗ ϕ,Ljz ∗ ψθ,

∣∣Ljz ∗ ϕ∣∣, ∣∣Ljz ∗ ψθ∣∣)θ.
In this case, the activations ϕj(x) are complex. The rainbow model extends to this case by
adding complex conjugates at appropriate places. For instance, the alignment matrices become
complex unitary operators when both activations and weights are complex.

j 1 2 3 4 5 6 7 8 9 10 11
CIFAR-10 (J = 3) dj 64 128 256 512 - - - - - - -
CIFAR-10 (J = 7) dj 64 128 256 512 512 512 512 512 - - -
ImageNet (J = 10) dj 32 64 64 128 256 512 512 512 512 512 256

Table F.1: Number dj of output channels of Lj, 1 ≤ j ≤ J + 1. The total number of projectors is
J + 1 = 4 or J + 1 = 8 for CIFAR-10 and J + 1 = 11 for ImageNet.

ResNet. Pj is the patch-extraction operator defined in Section 7.2.3. The non-linearity ρ
is a ReLU. We have trained a slightly different ResNet with no bias parameters. In addi-
tion, the batch-normalization layers have no learned affine parameters, and are placed after the
non-linearity to be consistent with our normalization conventions. The top-5 test accuracy on
ImageNet remains at 89% like the original model.

Training. Network weights are initialized with i.i.d. samples from an uniform distribution
(Glorot and Bengio, 2010) with so-called Kaiming variance scaling (He et al., 2015), which
is the default in the PyTorch library (Paszke et al., 2019). Despite the uniform initialization,
weight marginals become Gaussian after a single training epoch. Scattering networks are trained
for 150 epochs with an initial learning rate of 0.01 which is divided by 10 every 50 epochs, with
a batch size of 128. ResNets are trained for 90 epochs with an initial learning rate of 0.1 which
is divided by 10 every 30 epochs, with a batch size of 256. We use the optimizer SGD with a
momentum of 0.9 and a weight decay of 10−4 (except for Figures 7.4 and 7.10 where weight decay
has been disabled). We use classical data augmentations: horizontal flips and random crops for
CIFAR, random resized crops of size 224 and horizontal flips for ImageNet. The classification
error on the ImageNet validation set is computed on a single center crop of size 224.

Activation covariances. The covariance of the activations ϕ̂j(x) is computed over channels
and averaged across space. Precisely, we compute

Ex

[∑
u

ϕ̂j(x)[u] ϕ̂j(x)[u]T
]
,

175



where ϕ̂j(x)[u] is a channel vector of dimension d′
j at spatial location u. It yields a matrix

of dimension d′
j × d′

j . For scattering networks, the d′
j channels correspond to the dj output

channels of Lj times the 5 scattering channels computed by Pj (times 2 when ρ includes a skip-
connection). For ResNet, ϕ̂j(x)[u] is a patch of size sj × sj centered at u due to the operator
Pj . dj is thus equal to the number d′

j of channels of ϕ̂j multiplied by s2
j .

176



Bibliography





Bibliography

Kumar K Agrawal, Arnab Kumar Mondal, Arna Ghosh, and Blake Richards. α-ReQ : Assess-
ing representation quality in self-supervised learning by measuring eigenspectrum decay. In
Advances in Neural Information Processing Systems, volume 35, pages 17626–17638, 2022.
118

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022. 102, 108

Jason M Altschuler and Sinho Chewi. Faster high-accuracy log-concave sampling via algorithmic
warm starts. arXiv preprint arXiv:2302.10249, 2023. 9, 11, 37

Joakim Andén, Vincent Lostanlen, and Stéphane Mallat. Joint time-frequency scattering for
audio classification. In 2015 IEEE 25th International Workshop on Machine Learning for
Signal Processing (MLSP), pages 1–6. IEEE, 2015. 22

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982. 12

Mathieu Andreux, Tomás Angles, Georgios Exarchakisgeo, Robertozzi Leonardu, Gaspar Ro-
chette, Louis Thiry, John Zarka, Stéphane Mallat, Joakim Andén, Eugene Belilovsky, Joan
Bruna, Vincent Lostanlen, Matthew J Hirn, Edouard Oyallon, Sixin Zhang, Carmine E Cella,
and Michael Eickenberg. Kymatio: Scattering transforms in python. Journal of Machine
Learning Research, 21(60):1–6, 2020. 156, 162

Fabio Anselmi, Lorenzo Rosasco, Cheston Tan, and Tomaso Poggio. Deep convolutional net-
works are hierarchical kernel machines. arXiv preprint arXiv:1508.01084, 2015. 8, 23, 26,
111

Fabio Anselmi, Lorenzo Rosasco, and Tomaso Poggio. On invariance and selectivity in repre-
sentation learning. Information and Inference: A Journal of the IMA, 5(2):134–158, 2016.
8

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical
society, 68(3):337–404, 1950. 23, 101

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
The silent alignment effect. In International Conference on Learning Representations, 2022.
24, 125

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of
Machine Learning Research, 18(19):1–53, 2017a. 8, 9, 75

Francis Bach. On the equivalence between kernel quadrature rules and random feature expan-
sions. The Journal of Machine Learning Research, 18(1):714–751, 2017b. 9, 23, 103



Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue
for nonnull complex sample covariance matrices. The Annals of Probability, 33(5):1643–1697,
2005. 114

Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and Geometry of Markov Diffusion
Operators, volume 348. Springer, 2014. 11, 36

Krishna Balasubramanian, Sinho Chewi, Murat A Erdogdu, Adil Salim, and Shunshi Zhang.
Towards a theory of non-log-concave sampling: first-order stationarity guarantees for langevin
monte carlo. In Conference on Learning Theory, pages 2896–2923. PMLR, 2022. 32

Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal
Vincent, and Simon Lacoste-Julien. Implicit regularization via neural feature alignment. In
International Conference on Artificial Intelligence and Statistics, pages 2269–2277. PMLR,
2021. 24, 125

Matthias Bartelmann and Peter Schneider. Weak gravitational lensing. Physics Reports, 340:
291–472, 2001. ISSN 0370-1573. 15, 43

Francesca Bartolucci, Ernesto De Vito, Lorenzo Rosasco, and Stefano Vigogna. Understanding
neural networks with reproducing kernel banach spaces. arXiv preprint arXiv:2109.09710,
2021. 9

Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy
Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms and
architectures. Advances in Neural Information Processing Systems, 31, 2018. 110

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
Understanding the role of individual units in a deep neural network. Proceedings of the
National Academy of Sciences, 117(48):30071–30078, 2020. 123

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009. 18

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In
Proceedings of ICML workshop on unsupervised and transfer learning, pages 17–36. JMLR
Workshop and Conference Proceedings, 2012. 119

Frederik Benzing, Simon Schug, Robert Meier, Johannes Von Oswald, Yassir Akram, Nicolas
Zucchet, Laurence Aitchison, and Angelika Steger. Random initialisations performing above
chance and how to find them. In OPT 2022: Optimization for Machine Learning (NeurIPS
2022 Workshop), 2022. 102, 108

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures–Wasserstein distance between
positive definite matrices. Expositiones Mathematicae, 37(2):165–191, 2019. 102, 103, 166,
169, 170

Alberto Bietti. Foundations of deep convolutional models through kernel methods. Theses,
Université Grenoble Alpes, 2019. 26, 98, 105, 111

Alberto Bietti and Francis Bach. Deep equals shallow for ReLU networks in kernel regimes. In
International Conference on Learning Representations, 2021. 23, 105, 111

Alberto Bietti and Julien Mairal. Group invariance, stability to deformations, and complexity
of deep convolutional representations. Journal of Machine Learning Research, 20(25):1–49,
2019. 23, 111

180



Alberto Bietti, Luca Venturi, and Joan Bruna. On the sample complexity of learning under
geometric stability. Advances in neural information processing systems, 34:18673–18684, 2021.
8

Adam Block, Youssef Mroueh, Alexander Rakhlin, and Jerret Ross. Fast mixing of multi-scale
langevin dynamics under the manifold hypothesis. arXiv preprint arXiv:2006.11166, 2020. 32

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE Trans.
Pattern Anal. Mach. Intell., 35(8):1872–1886, 2013. 19, 21, 72, 77, 78, 79, 86, 87, 92

Robert W Buccigrossi and Eero P Simoncelli. Image compression via joint statistical charac-
terization in the wavelet domain. IEEE Trans Image Processing, 8(12):1688–1701, Dec 1999.
58

Peter J Burt and Edward H Adelson. The Laplacian pyramid as a compact image code. IEEE
Trans Comm, COM-31(4):532–540, Apr 1983. 8, 58

Emmanuel J Candes, Justin K Romberg, and Terrence Tao. Stable signal recovery from incom-
plete and inaccurate measurements. Communications on Pure and Applied Mathematics: A
Journal Issued by the Courant Institute of Mathematical Sciences, 59(8):1207–1223, 2006. 90

Emmanuel Jean Candès, David Leigh Donoho, et al. Curvelets: A surprisingly effective non-
adaptive representation for objects with edges. Department of Statistics, Stanford University
USA, 1999. 9

Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algo-
rithm. Foundations of Computational Mathematics, 7:331–368, 2007. 9, 167

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr,
Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion
models. arXiv preprint arXiv:2301.13188, 2023. 13, 32

Patrick Cattiaux, Giovanni Conforti, Ivan Gentil, and Christian Léonard. Time reversal of
diffusion processes under a finite entropy condition. arXiv preprint arXiv:2104.07708, 2021.
48

Paul M Chaikin, Tom C Lubensky, and Thomas A Witten. Principles of condensed matter
physics, volume 10. Cambridge university press, 1995. 38, 42

Antonin Chambolle, Ronald A DeVore, Nam-Yong Lee, and Bradley J Lucier. Nonlinear wavelet
image processing: Variational problems, compression, and noise removal through wavelet
shrinkage. IEEE Trans Image Processing, 7:319–335, Mar 1998. 58

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative
modeling: User-friendly bounds under minimal smoothness assumptions. arXiv preprint
arXiv:2211.01916, 2022a. 12, 32, 57

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan.
Wavegrad: Estimating gradients for waveform generation. International Conference on Learn-
ing Representations, 2021. 46

Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by
basis pursuit. SIAM review, 43(1):129–159, 2001. 9, 18

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as
easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv
preprint arXiv:2209.11215, 2022b. 12, 32, 45

181



Tianshui Chen, Liang Lin, Wangmeng Zuo, Xiaonan Luo, and Lei Zhang. Learning a wavelet-
like auto-encoder to accelerate deep neural networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018. 52, 58

Zhengdao Chen, Eric Vanden-Eijnden, and Joan Bruna. A functional-space mean-field theory
of partially-trained three-layer neural networks. arXiv preprint arXiv:2210.16286, 2022c. 24,
98, 108

Sihao Cheng and Brice Ménard. Weak lensing scattering transform: dark energy and neutrino
mass sensitivity. Monthly Notices of the Royal Astronomical Society, 507(1):1012–1020, 07
2021. ISSN 0035-8711. 43

Sinho Chewi. Log-Concave Sampling. draft, 2023. 9, 11, 32

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in Neural Information Processing
Systems, 31, 2018. 24, 98, 101, 108

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Conference on Learning Theory, pages 1305–1338.
PMLR, 2020. 9, 24, 98

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
ming. Advances in Neural Information Processing Systems, 32, 2019. 23, 98, 100

Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. Advances in Neural
Information Processing Systems, 22, 2009. 23, 26, 98, 105

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1251–1258, 2017.
110

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Par-
seval networks: Improving robustness to adversarial examples. In Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pages 854–863. PMLR, 2017. 72, 76

Peter Clifford and John M Hammersley. Markov fields on finite graphs and lattices. Unpublished
Manuscript, 1971. 7, 58, 59, 60

Regev Cohen, Yochai Blau, Daniel Freedman, and Ehud Rivlin. It has potential: Gradient-driven
denoisers for convergent solutions to inverse problems. Adv Neural Information Processing
Systems (NeurIPS), 34, 2021. 58, 61

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
Conference on Machine Learning, volume 48 of JMLR Workshop and Conference Proceedings,
pages 2990–2999, 2016. 8, 99, 110

Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In International
Conference on Learning Representations, 2018. 20

Ronald R Coifman and M Victor Wickerhauser. Entropy-based algorithms for best basis selec-
tion. IEEE Transactions on Information Theory, 38(2):713–718, 1992. 88

Ronald R Coifman, Yves Meyer, and Victor Wickerhauser. Wavelet analysis and signal process-
ing. In In Wavelets and their applications. Citeseer, 1992. 39, 135, 137

182



Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels
based on centered alignment. The Journal of Machine Learning Research, 13(1):795–828,
2012. 102

F. Cotter and N. G. Kingsbury. A learnable scatternet: Locally invariant convolutional layers.
In 2019 IEEE International Conference on Image Processing, ICIP, pages 350–354. IEEE,
2019. 88

Nello Cristianini, John Shawe-Taylor, Andre Elisseeff, and Jaz Kandola. On kernel-target align-
ment. Advances in Neural Information Processing Systems, 14, 2001. 102

Matthew S Crouse, Robert D Nowak, and Richard G Baraniuk. Wavelet-based statistical signal
processing using hidden markov models. IEEE Trans Signal Processing, 46(4):886–902, 1998.
58

Yan-Qiu Cui and Ke Wang. Markov random field modeling in the wavelet domain for image
denoising. In IEEE Int’l Conf Machine Learning and Cybernetics, volume 9, pages 5382–5387,
2005. 58, 59

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. Advances in Neural Information
Processing Systems, 29, 2016. 23, 98, 105, 108, 111

Giannis Daras, Mauricio Delbracio, Hossein Talebi, Alexandros G Dimakis, and Peyman Milan-
far. Soft diffusion: Score matching for general corruptions. arXiv preprint arxiv:2209.05442,
Sep 2022. 58

Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics,
1992. 136, 141

Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 57(11):
1413–1457, 2004. 18

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34, 2021. 48, 49

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas.
Predicting parameters in deep learning. Advances in Neural Information Processing Systems,
26, 2013. 24, 118

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting
linear structure within convolutional networks for efficient evaluation. Advances in Neural
Information Processing Systems, 27, 2014. 24, 118

Prafulla Dhariwal and Alex Nichol. Diffusion models beat GAN on image synthesis. arXiv
preprint arXiv:2105.05233, 2021. 7, 15, 28, 44, 46, 52, 61

Roland L’vovich Dobrushin. The description of the random field by its conditional distributions
and its regularity conditions. Teoriya Veroyatnostei i ee Primeneniya, 13(2):201–229, 1968.
59

Katharina Dobs, Julio Martinez, Alexander JE Kell, and Nancy Kanwisher. Brain-like func-
tional specialization emerges spontaneously in deep neural networks. Science advances, 8(11):
eabl8913, 2022. 123

183



Carles Domingo-Enrich, Alberto Bietti, Eric Vanden-Eijnden, and Joan Bruna. On energy-
based models with overparametrized shallow neural networks. In International Conference on
Machine Learning, pages 2771–2782. PMLR, 2021. 32

David Donoho. Denoising by soft-thresholding. IEEE Trans Information Theory, 43:613–627,
1995. 19

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–
1306, 2006. 90

David L Donoho and Michael Elad. Optimally sparse representation in general (nonorthogonal)
dictionaries via ℓ1 minimization. Proceedings of the National Academy of Sciences, 100(5):
2197–2202, 2003. 18

David L Donoho and Iain M Johnstone. Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3):425–455, 09 1994. 74, 75, 92

David L Donoho, Matan Gavish, and Iain M Johnstone. Optimal shrinkage of eigenvalues in
the spiked covariance model. Annals of statistics, 46(4):1742, 2018. 115

Matthias Dorfer, Rainer Kelz, and Gerhard Widmer. Deep linear discriminant analysis. arXiv
preprint arXiv:1511.04707, 2015. 73

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. ICLR, 2021. 6, 88

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no bar-
riers in neural network energy landscape. In International Conference on Machine Learning,
pages 1309–1318. PMLR, 2018. 108

Alexis Dubreuil, Adrian Valente, Manuel Beiran, Francesca Mastrogiuseppe, and Srdjan Os-
tojic. The role of population structure in computations through neural dynamics. Nature
neuroscience, 25(6):783–794, 2022. 123

Weinan E and Stephan Wojtowytsch. On the banach spaces associated with multi-layer relu
networks: Function representation, approximation theory and gradient descent dynamics.
arXiv preprint arXiv:2007.15623, 2020. 24, 98, 108

Noureddine El Karoui. Spectrum estimation for large dimensional covariance matrices using
random matrix theory. The Annals of Statistics, pages 2757–2790, 2008a. 114

Noureddine El Karoui. Operator norm consistent estimation of large-dimensional sparse covari-
ance matrices. The Annals of Statistics, 36(6):2717–2756, 2008b. 115

Michael Elad and Michal Aharon. Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Transactions on Image processing, 15(12):3736–3745, 2006. 9

Eric Elmoznino and Michael F Bonner. High-performing neural network models of visual cortex
benefit from high latent dimensionality. bioRxiv, pages 2022–07, 2022. 118

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In International Conference on
Learning Representations, 2022. 102, 108

184



Zhou Fan and Zhichao Wang. Spectra of the conjugate kernel and neural tangent kernel for
linear-width neural networks. Advances in neural information processing systems, 33:7710–
7721, 2020. 23

Kirsten Fischer, Alexandre René, Christian Keup, Moritz Layer, David Dahmen, and Moritz
Helias. Decomposing neural networks as mappings of correlation functions. Physical Review
Research, 4(4):043143, 2022. 24

Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7(7):179–188, 1936. 17, 72

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. Advances in Neural Information
Processing Systems, 33:5850–5861, 2020. 24, 125

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learn-
ing, pages 3259–3269. PMLR, 2020. 125

C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimiza-
tion. In International Conference on Learning Representations, 2017. 108

Rinon Gal, Dana Cohen Hochberg, Amit Bermano, and Daniel Cohen-Or. SWAGAN: A style-
based wavelet-driven generative model. ACM Transactions on Graphics (TOG), 40(4):1–11,
2021. 32, 52, 58

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in Neural Information
Processing Systems, 31, 2018. 108

Leszek Gawarecki and Vidyadhar Mandrekar. Stochastic differential equations. Stochastic Dif-
ferential Equations in Infinite Dimensions: with Applications to Stochastic Partial Differential
Equations, pages 73–149, 2011. 105

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and
lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and Experi-
ment, 2020(11):113301, 2020. 24, 98

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distibutions, and bayesian
restoration of images. IEEE Trans Pattern Analysis and Machine Intelligence, 6:721–741,
Nov 1984. 7, 13, 58, 59

Raja Giryes, Guillermo Sapiro, and Alex M Bronstein. Deep neural networks with random Gaus-
sian weights: A universal classification strategy? IEEE Transactions on Signal Processing,
64(13):3444–3457, 2016. 90

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial intel-
ligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.
175

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings
of the 27th international conference on international conference on machine learning, pages
399–406, 2010. 18, 19

185



Leonard Gross. Logarithmic sobolev inequalities. American Journal of Mathematics, 97(4):
1061–1083, 1975. 11

Arushi Gupta, José Manuel Zorrilla Matilla, Daniel Hsu, and Zoltán Haiman. Non-Gaussian
information from weak lensing data via deep learning. Physical Review D, 97(10):103515,
2018. 43, 140

Florentin Guth, Simon Coste, Valentin De Bortoli, and Stéphane Mallat. Wavelet score-based
generative modeling. In Advances in Neural Information Processing Systems, 2022a. 28, 45,
47, 49, 50, 53

Florentin Guth, John Zarka, and Stéphane Mallat. Phase Collapse in Neural Networks. In
International Conference on Learning Representations, 2022b. 28

Florentin Guth, Etienne Lempereur, Joan Bruna, and Stéphane Mallat. Conditionally strongly
log-concave generative models. In International Conference on Machine Learning, 2023a. 28,
31, 33, 37

Florentin Guth, Brice Ménard, Gaspar Rochette, and Stéphane Mallat. A rainbow in deep
network black boxes. arXiv preprint arXiv:2305.18512, 2023b. 28

Alfred Haar. Zur theorie der orthogonalen funktionensysteme. Math Annal., 69:331–371, 1910.
62

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in Neural Information Processing Systems, 5, 1992. 116

Trevor Hastie and Robert Tibshirani. Generalized additive models: some applications. Journal
of the American Statistical Association, 82(398):371–386, 1987. 167

Trevor Hastie, Robert Tibshirani, and Jerome H Friedman. The elements of statistical learning:
data mining, inference and prediction. Springer, 2 edition, 2009. 85

Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. The Annals of Proba-
bility, 14(4):1188–1205, 1986. 48

James V Haxby, J Swaroop Guntupalli, Andrew C Connolly, Yaroslav O Halchenko, Bryan R
Conroy, M Ida Gobbini, Michael Hanke, and Peter J Ramadge. A common, high-dimensional
model of the representational space in human ventral temporal cortex. Neuron, 72(2):404–416,
2011. 102

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-
passing human-level performance on ImageNet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015. 175

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. 6, 17, 20, 72, 79, 88, 112

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer,
and Sepp Hochreiter. GANs trained by a two time-scale update rule converge to a nash
equilibrium. CoRR, abs/1706.08500, 2017. 55

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015. 6

186



Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 2020. 7, 44, 46, 47, 52, 54, 55, 57, 61, 64, 67

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim
Salimans. Cascaded diffusion models for high fidelity image generation. Journal of Machine
Learning Research, 23(47):1–33, 2022. 15, 28, 44, 46, 51, 52, 58, 60, 61

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556,
2022. 113

Daniel Hsu, Sham M Kakade, and Tong Zhang. Random design analysis of ridge regression.
In Conference on learning theory, pages 9–1. JMLR Workshop and Conference Proceedings,
2012. 37

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022. 125

John R Hurley and Raymond B Cattell. The Procrustes program: Producing direct rotation to
test a hypothesized factor structure. Behavioral science, 7(2):258, 1962. 102

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005. 9, 35, 46, 48

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, page 448–456, 2015. 5, 73, 162,
174

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in Neural Information Processing Systems, 31,
2018. 23, 98

Arthur Jacot, Berfin Şimşek, Francesco Spadaro, Clément Hongler, and Franck Gabriel. Implicit
regularization of random feature models. In International Conference on Machine Learning,
pages 4631–4640. PMLR, 2020. 9

Stéphane Jaffard. Wavelelt methods for fast resolution elliptic problems. SIAM Journal on
Numerical Analysis, 29(5):965–986, 1992. 53

Hicham Janati, Boris Muzellec, Gabriel Peyré, and Marco Cuturi. Entropic optimal transport
between unbalanced Gaussian measures has a closed form. Advances in Neural Information
Processing Systems, 33:10468–10479, 2020. 170

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best
multi-stage architecture for object recognition? In 2009 IEEE 12th international conference
on computer vision, pages 2146–2153. IEEE, 2009. 22, 98, 100

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor,
Kyunghyun Cho, and Krzysztof Geras. The break-even point on optimization trajectories
of deep neural networks. In International Conference on Learning Representations, 2020. 125

187



Yuling Jiao, Bangti Jin, and Xiliang Lu. Iterative soft/hard thresholding with homotopy con-
tinuation for sparse recovery. IEEE Signal Processing Letters, 24(6):784–788, 2017. 18

Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace diffusion
generative models, 2022. 46, 52

Iain M Johnstone. On the distribution of the largest eigenvalue in principal components analysis.
The Annals of statistics, 29(2):295–327, 2001. 114

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021. 46, 52, 55

Zahra Kadkhodaie and Eero P Simoncelli. Stochastic solutions for linear inverse problems using
the prior implicit in a denoiser. In Adv Neural Information Processing Systems (NeurIPS*21),
volume 34, Dec 2021. 13, 46, 55, 58, 61, 64, 152, 153

Zahra Kadkhodaie, Florentin Guth, Stéphane Mallat, and Eero P Simoncelli. Learning multi-
scale local conditional probability models of images. In International Conference on Learning
Representations, volume 11, 2023. 28, 57

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020. 113

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. arxiv 2017. arXiv preprint arXiv:1710.10196, pages
1–26, 2018. 47, 53, 65, 152

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. Advances in Neural Information Processing Systems, 35:
26565–26577, 2022. 13

Jevgenjis. Kaupužs, Roderick VN Melnik, and J Rimšāns. Corrections to finite-size scaling in
the φ4 model on square lattices. International Journal of Modern Physics C, 27(09):1650108,
2016. 38

Bahjat Kawar, Gregory Vaksman, and Michael Elad. Snips: Solving noisy inverse problems
stochastically. Adv Neural Information Processing Systems (NeurIPS), 34:21757–21769, 2021.
58, 61

Martin Kilbinger. Cosmology with cosmic shear observations: a review. Reports on Progress in
Physics, 78(8):086901, jul 2015. 15, 43

Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 5, 149

Diederik P Kingma and Ruiqi Gao. Understanding the diffusion objective as a weighted integral
of elbos. arXiv preprint arXiv:2303.00848, 2023. 13

Frederic Koehler, Alexander Heckett, and Andrej Risteski. Statistical efficiency of score match-
ing: The view from isoperimetry. arXiv preprint arXiv:2210.00726, 2022. 9, 11, 32, 36

Andrey N Kolmogorov. A refinement of previous hypotheses concerning the local structure
of turbulence in a viscous incompressible fluid at high reynolds number. Journal of Fluid
Mechanics, 13(1):82–85, 1962. 50

188



Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in
neural networks to the action of compact groups. In International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 2747–2755, 2018. 8,
99, 110

Risi Kondor, Zhen Lin, and Shubendhu Trivedi. Clebsch–Gordan nets: a fully Fourier space
spherical convolutional neural network. In Advances in Neural Information Processing Systems
31, pages 10138–10147, 2018. 20

Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. arXiv preprint
arXiv:2106.00132, 2021. 46, 52, 55

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. International Conference on Learning Representations,
2021. 46

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, pages
3519–3529. PMLR, 2019. 24, 28, 98, 99, 102, 108, 113

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009. 76, 79, 87, 112

Alex Krizhevsky. Convolutional deep belief networks on cifar-10. Technical report, University
of Toronto, 2010. 77

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems 25,
pages 1097–1105, 2012. 6, 17, 19, 77, 86, 87, 123, 162

John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning, pages 282–289, 2001. 7

Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, and Marcelo
Pereyra. Bayesian imaging using plug & play priors: when Langevin meets Tweedie. SIAM
Journal on Imaging Sciences, 15(2):701–737, 2022. 61

Rene Laureijs, J Amiaux, S Arduini, J-L Augueres, J Brinchmann, R Cole, M Cropper, C Dabin,
L Duvet, A Ealet, et al. Euclid definition study report. arXiv preprint arXiv:1110.3193, 2011.
33, 43

Erwan Le Pennec and Stéphane Mallat. Sparse geometric image representations with bandelets.
IEEE Transactions on Image Processing, 14(4):423–438, 2005. 9

Guillaume Leclerc and Aleksander Madry. The two regimes of deep network training. arXiv
preprint arXiv:2002.10376, 2020. 125

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995. 6, 109

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hub-
bard, and Lawrence Jackel. Handwritten digit recognition with a back-propagation network.
Advances in Neural Information Processing Systems, 2, 1989a. 5, 6, 109

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in Neural Infor-
mation Processing Systems, 2, 1989b. 116

189



Yann LeCun, Corinna Cortes, and Chris J Burges. MNIST handwritten digit database. ATT
Labs [Online], 2, 2010. URL http://yann.lecun.com/exdb/mnist. 76, 87

Yann LeCun, Yoshu Bengio, and Geoffrey E Hinton. Deep learning. Nature, 521(7553):436–444,
2015. 1, 5, 72

Gregory R Lee, Ralf Gommers, Filip Waselewski, Kai Wohlfahrt, and Aaron O’Leary. Py-
wavelets: A python package for wavelet analysis. Journal of Open Source Software, 4(36):
1237, 2019a. 141

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Deep neural networks as Gaussian processes. In International Confer-
ence on Learning Representations, 2018. 23, 98, 108

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in Neural Information Processing Systems, 32, 2019b. 23,
98

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman No-
vak, and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study.
Advances in Neural Information Processing Systems, 33:15156–15172, 2020. 24, 98

Shuo-Hui Li. Learning non-linear wavelet transformation via normalizing flow. arXiv preprint
arXiv:2101.11306, 2021. 52, 58

Yundong Li, Weigang Zhao, and Jiahao Pan. Deformable patterned fabric defect detection
with Fisher criterion-based deep learning. IEEE Transactions on Automation Science and
Engineering, 14(2):1256–1264, 2016. 73

Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and Sanjeev
Arora. Enhanced convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809, 2019.
112, 122

Zhiyuan Li, Yi Zhang, and Sanjeev Arora. Why are convolutional nets more sample-efficient
than fully-connected nets? In International Conference on Learning Representations, 2021. 8

Jialin Liu and Xiaohan Chen. Alista: Analytic weights are as good as learned weights in lista.
In International Conference on Learning Representations (ICLR), 2019. 18

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds, 2022a. 46, 52, 55

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11976–11986, 2022b. 6

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In International Conference on Computer Vision, December 2015. 54, 62, 152

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for im-
proved sampling speed. arXiv preprint arXiv:2101.02388, 2021. 46, 52, 55

Siwei Lyu and Eero P Simoncelli. Modeling multiscale subbands of photographic images with
fields of Gaussian scale mixtures. IEEE Trans Pattern Analysis and Machine Intelligence, 31
(4):693–706, Apr 2009. 58

190

http://yann.lecun.com/exdb/mnist


Zongming Ma. Sparse principal component analysis and iterative thresholding. The Annals of
Statistics, 41(2):772–801, 2013. 115

Shahin Mahdizadehaghdam, Ashkan Panahi, Hamid Krim, and Liyi Dai. Deep dictionary learn-
ing: A parametric network approach. IEEE Transactions on Image Processing, 28(10):4790–
4802, Oct 2019. 19, 84, 89, 91, 92

Julien Mairal. End-to-end kernel learning with supervised convolutional kernel networks. Ad-
vances in Neural Information Processing Systems, 29, 2016. 23, 26, 98, 105

Julien Mairal, Jean Ponce, Guillermo Sapiro, Andrew Zisserman, and Francis Bach. Supervised
dictionary learning. In Advances in Neural Information Processing Systems, pages 1033–1040,
2009. 18

Julien Mairal, Francis Bach, and Jean Ponce. Task-driven dictionary learning. IEEE transactions
on pattern analysis and machine intelligence, 34(4):791–804, 2011. 18

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel net-
works. Advances in Neural Information Processing Systems, 27, 2014. 23, 111, 112, 122

Maurits Malfait and Dirk Roose. Wavelet-based image denoising using a Markov random field
a priori model. IEEE Trans Image Processing, 6(4):549–565, 1997. 58, 59

Stéphane Mallat. A theory for multiresolution signal decomposition: The wavelet representation.
IEEE Trans. Pattern Anal. Mach. Intell., 11:674–693, 1989. 50, 135, 146, 147

Stéphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way. Aca-
demic Press, 3rd edition, 2008. 8, 9, 58, 59, 78, 136, 137, 148

Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathemat-
ics, 65(10):1331–1398, 2012. 8, 19, 20, 72, 80, 83, 87, 111

Stéphane Mallat. Understanding deep convolutional networks. Phil. Trans. of Royal Society A,
374(2065), 2016. 22

Stéphane Mallat, Sixin Zhang, and Gaspar Rochette. Phase harmonic correlations and convolu-
tional neural networks. Information and Inference: A Journal of the IMA, 9(3):721–747, 11
2019. 21, 78, 89

Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling
laws. arXiv preprint arXiv:2210.16859, 2022. 113

Benoît B Mandelbrot. The fractal geometry of nature/revised and enlarged edition. New York,
1983. 50

Vladimir A Marčenko and Leonid A Pastur. Distribution of eigenvalues for some sets of random
matrices. Mathematics of the USSR-Sbornik, 1(4):457, 1967. 121

Tanguy Marchand, Misaki Ozawa, Giulio Biroli, and Stéphane Mallat. Wavelet conditional
renormalization group. arXiv preprint arXiv:2207.04941, 2022. 10, 14, 15, 28, 32, 38, 39, 40,
43, 45, 46, 51, 57, 58, 59, 60, 142, 143

Peter A Markowich and Cédric Villani. On the trend to equilibrium for the Fokker-Planck
equation: an interplay between physics and functional analysis. Mat. Contemp, 19:1–29,
2000. 11

191



Charles H Martin and Michael W Mahoney. Implicit self-regularization in deep neural networks:
Evidence from random matrix theory and implications for learning. The Journal of Machine
Learning Research, 22(1):7479–7551, 2021. 24, 98, 105, 115, 121

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. arXiv preprint
arXiv:1804.11271, 2018. 23, 98, 108

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape
of two-layers neural networks. Proceedings of the National Academy of Sciences, 115(33):
E7665–E7671, 2018. 24, 98, 101, 108

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances in random
features and kernel models. In Conference on Learning Theory, pages 3351–3418. PMLR,
2021. 8

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization error of random fea-
ture and kernel methods: hypercontractivity and kernel matrix concentration. Applied and
Computational Harmonic Analysis, 59:3–84, 2022. 9, 23

Yves Meyer. Wavelets and Operators. Advanced mathematics. Cambridge university press, 1992.
52, 53

M Kivanc Mihçak, Igor Kozintsev, Kannan Ramchandran, and Pierre Moulin. Low-complexity
image denoising based on statistical modeling of wavelet coefficients. IEEE Trans Signal
Processing, 6(12):300–303, Dec 1999. 58

Stanislav Minsker. On some extensions of Bernstein’s inequality for self-adjoint operators. Statis-
tics & Probability Letters, 127:111–119, 2017. 103

Koichi Miyasawa. An empirical Bayes estimator of the mean of a normal population. Bull. Inst.
Internat. Statist., 38:181–188, 1961. 61, 152

Sreyas Mohan, Zahra Kadkhodaie, Eero P Simoncelli, and Carlos Fernandez-Granda. Robust
and interpretable blind image denoising via bias-free convolutional neural networks. In Inter-
national Conference on Learning Representations, 2019. 63, 75, 87, 100, 152

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. Advances in Neural Information Processing Systems, 31,
2018. 102

Jaouad Mourtada. Exact minimax risk for linear least squares, and the lower tail of sample
covariance matrices. The Annals of Statistics, 50(4):2157–2178, 2022. 37

Eliya Nachmani, Robin San Roman, and Lior Wolf. Non Gaussian denoising diffusion models.
arXiv preprint arXiv:2106.07582, 2021. 46, 52, 55

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages
807–814, 2010. 5

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 1996. 23, 98, 108

Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose
estimation. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part VIII 14, pages 483–499. Springer, 2016.
6

192



Phan-Minh Nguyen and Huy Tuan Pham. A rigorous framework for the mean field limit of
multilayer neural networks. arXiv preprint arXiv:2001.11443, 2020. 24, 98, 108

Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. arXiv
preprint arXiv:2102.09672, 2021. 13, 46, 50, 54, 55, 149

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017.
123

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997. 9

Jordan Ott, Erik Linstead, Nicholas LaHaye, and Pierre Baldi. Learning in the machine: To
share or not to share? Neural Networks, 126:235–249, 2020. ISSN 0893-6080. 110

Edouard Oyallon. Analyzing and Introducing Structures in Deep Convolutional Neural Networks.
Theses, Paris Sciences et Lettres, 2017. 83

Edouard Oyallon. Building a regular decision boundary with deep networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1886–1894, 2017.
17, 22, 72

Edouard Oyallon and Stéphane Mallat. Deep roto-translation scattering for object classification.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 2865–2873.
IEEE Computer Society, 2015. 22, 72, 80, 112, 122

Edouard Oyallon, Eugene Belilovsky, and Sergey Zagoruyko. Scaling the scattering transform:
Deep hybrid networks. In Proceedings of the IEEE International Conference on Computer
Vision, pages 5618–5627, 2017. 22, 81

Rupert Paget and I Dennis Longstaff. Texture synthesis via a noncausal nonparametric mul-
tiscale markov random field. IEEE transactions on image processing, 7(6):925–931, 1998.
58

Biraj Pandey, Marius Pachitariu, Bingni W Brunton, and Kameron Decker Harris. Structured
random receptive fields enable informative sensory encodings. PLoS Computational Biology,
18(10):e1010484, 2022. 122

Vardan Papyan. Measurements of three-level hierarchical structure in the outliers in the spec-
trum of deepnet Hessians. In International Conference on Machine Learning, pages 5012–5021.
PMLR, 2019. 116

Vardan Papyan. Traces of class/cross-class structure pervade deep learning spectra, 2020. 17,
72

Vardan Papyan, X Y Han, and David L Donoho. Prevalence of neural collapse during the
terminal phase of deep learning training. Proceedings of the National Academy of Sciences,
2020. 17, 72, 83

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Sys-
tems, pages 8024–8035, 2019. 175

193



Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data
science. Foundations and Trends in Machine Learning, 11(5-6):355–607, 2019. 103

Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, 8:
143–195, 1999. 75

Nicolas Pinto, David Doukhan, James J DiCarlo, and David D Cox. A high-throughput screen-
ing approach to discovering good forms of biologically inspired visual representation. PLoS
computational biology, 5(11):e1000579, 2009. 22, 98, 100

Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Why
and when can deep-but not shallow-networks avoid the curse of dimensionality: a review.
International Journal of Automation and Computing, 14(5):503–519, 2017. 8

Roman Pogodin, Yash Mehta, Timothy Lillicrap, and Peter E Latham. Towards biologically
plausible convolutional networks. Advances in Neural Information Processing Systems, 34:
13924–13936, 2021. 110

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Ex-
ponential expressivity in deep neural networks through transient chaos. Advances in neural
information processing systems, 29, 2016. 23

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-
tts: A diffusion probabilistic model for text-to-speech. arXiv preprint arXiV:2105.06337,
2021. 46

Javier Portilla, Vasily Strela, Martin J Wainwright, and Eero P Simoncelli. Image denoising
using scale mixtures of Gaussians in the wavelet domain. IEEE Trans Image Processing, 12
(11):1338–1351, Nov 2003. 58

Matthew B Priestley. Evolutionary spectra and non-stationary processes. Journal of the Royal
Statistical Society: Series B (Methodological), 27(2):204–229, 1965. 86

Qiang Qiu, Xiuyuan Cheng, Robert Calderbank, and Guillermo Sapiro. DCFNet: Deep neural
network with decomposed convolutional filters. International Conference on Machine Learn-
ing, 2018. 80, 88

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA: Singular
vector canonical correlation analysis for deep learning dynamics and interpretability. Advances
in Neural Information Processing Systems, 30, 2017. 24, 98, 99, 102, 108, 113, 119

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
Neural Information Processing Systems, 20, 2007. 22, 23, 98, 100, 101, 118

Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In
46th annual Allerton conference on communication, control, and computing, pages 555–561.
IEEE, 2008. 9, 23, 101

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with CLIP latents. arXiv e-prints, art. arXiv:2204.06125, April
2022. 7, 32, 60, 66, 67

C R Rao. The utilization of multiple measurements in problems of biological classification.
Journal of the Royal Statistical Society: Series B (Methodological), 10(2):159–193, 1948. 17,
72

194



M Raphan and E P Simoncelli. Learning to be Bayesian without supervision. In Adv Neural
Information Processing Systems, volume 19, May 2007. 152

Stefano Recanatesi, Matthew Farrell, Madhu Advani, Timothy Moore, Guillaume Lajoie, and
Eric Shea-Brown. Dimensionality compression and expansion in deep neural networks. arXiv
preprint arXiv:1906.00443, 2019. 118

Markus Riedle. Cylindrical wiener processes. Séminaire de Probabilités XLIII, pages 191–214,
2011. 105

H Robbins. An empirical bayes approach to statistics. In Proc Third Berkeley Symposium on
Mathematical Statistics and Probability, volume I, pages 157–163. University of CA Press,
1956. 152

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022. 7, 32,
60, 66, 67

O Ronneberger, P Fischer, and T Brox. U-net: Convolutional networks for biomedical image
segmentation. In Int’l Conf Medical Image Computing and Computer-assisted Intervention,
pages 234–241. Springer, 2015. 6

Grant M Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of neural networks: An
interacting particle system approach. arXiv preprint arXiv:1805.00915, 2018. 24, 98, 101, 108

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random fea-
tures. Advances in neural information processing systems, 30, 2017. 9, 23

Alessandro Rudi, Guillermo D Canas, and Lorenzo Rosasco. On the sample complexity of
subspace learning. In Advances in Neural Information Processing Systems, volume 26, 2013.
103

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li Fei-
Fei. ImageNet large scale visual recognition challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015. 6, 19, 79, 86, 112, 123

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the Hessian in deep learning:
Singularity and beyond. arXiv preprint arXiv:1611.07476, 2016. 116

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis
of the Hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.
116

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. arXiv preprint arXiv:2104.07636,
2021. 15, 28, 44, 46, 51, 52, 54, 149

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes,
et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 7, 32, 60, 66, 67

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
arXiv preprint arXiv:2202.00512, 2022. 46, 52, 55

195



Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative diffusion
models. arXiv preprint arXiv:2104.02600, 2021. 46, 52, 55

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In International Conference on Learning
Representations, 2014. 125

Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116
(23):11537–11546, 2019. 125

Meyer Scetbon and Zaid Harchaoui. A spectral analysis of dot-product kernels. In International
conference on artificial intelligence and statistics, pages 3394–3402. PMLR, 2021. 23, 113,
118

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep informa-
tion propagation. In International Conference on Learning Representations, 2017. 23

Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002. 8, 101

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component
analysis. In Artificial Neural Networks—ICANN’97: 7th International Conference Lausanne,
Switzerland, October 8–10, 1997 Proceeedings, pages 583–588. Springer Verlag, 1997. 101

Peter H Schönemann. A generalized solution of the orthogonal Procrustes problem. Psychome-
trika, 31(1):1–10, 1966. 102

Dominik Schröder, Hugo Cui, Daniil Dmitriev, and Bruno Loureiro. Deterministic equivalent and
error universality of deep random features learning. In International Conference on Machine
Learning, 2023. 23

Friedrich Schuessler, Francesca Mastrogiuseppe, Alexis Dubreuil, Srdjan Ostojic, and Omri
Barak. The interplay between randomness and structure during learning in RNNs. Advances
in Neural Information Processing Systems, 33:13352–13362, 2020. 125

Ivan W Selesnick, Richard G Baraniuk, and Nick C Kingsbury. The dual-tree complex wavelet
transform. IEEE signal processing magazine, 22(6):123–151, 2005. 78

Levent Şendur and Ivan W Selesnick. Bivariate shrinkage functions for wavelet-based denoising
exploiting interscale dependency. IEEE Trans Signal Processing, 50(11):2744–2756, Nov 2002.
58

Inbar Seroussi, Gadi Naveh, and Zohar Ringel. Separation of scales and a thermodynamic
description of feature learning in some CNNs. Nature Communications, 14(1):908, 2023. 24

James P Sethna. Statistical Mechanics: Entropy, Order Parameters, and Complexity, volume 14.
Oxford University Press, USA, 2021. 38, 42

Haozhe Shan and Blake Bordelon. A theory of neural tangent kernel alignment and its influence
on training. arXiv preprint arXiv:2105.14301, 2021. 24

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improv-
ing convolutional neural networks via concatenated rectified linear units. In international
conference on machine learning, pages 2217–2225. PMLR, 2016. 86, 87

196



Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Jonathan Ragan-Kelley, Lud-
wig Schmidt, and Benjamin Recht. Neural kernels without tangents. In International Con-
ference on Machine Learning, pages 8614–8623. PMLR, 2020. 122

David Sherrington and Scott Kirkpatrick. Solvable Model of a Spin-Glass. Phys. Rev. Lett., 35
(26):1792–1796, dec 1975. 59

Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scattering for
texture discrimination. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1233–1240, 2013. 22, 92, 110

Patrice Y Simard, David Steinkraus, and John C Platt. Best practices for convolutional neural
networks applied to visual document analysis. In Proceedings of the Seventh International
Conference on Document Analysis and Recognition - Volume 2, 2003. 77

Eero P Simoncelli and William T Freeman. The steerable pyramid: A flexible architecture
for multi-scale derivative computation. In Proceedings., International Conference on Image
Processing, volume 3, pages 444–447. IEEE, 1995. 78

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015. 6, 17

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A law
of large numbers. SIAM Journal on Applied Mathematics, 80(2):725–752, 2020. 24, 98, 101,
108

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of deep neural networks.
Mathematics of Operations Research, 47(1):120–152, 2022. 24, 98, 108

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter
conference on applications of computer vision (WACV), pages 464–472. IEEE, 2017. 5

Samuel L Smith, David HP Turban, Steven Hamblin, and Nils Y Hammerla. Offline bilin-
gual word vectors, orthogonal transformations and the inverted softmax. In International
Conference on Learning Representations, 2017. 102

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics. In Francis Bach and David Blei,
editors, Proc 32nd Int’l Conf on Machine Learning (ICML), volume 37 of Proceedings of
Machine Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. 7, 57

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffu-
sion art or digital forgery? investigating data replication in diffusion models. arXiv preprint
arXiv:2212.03860, 2022. 13, 32

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020. 46, 52, 55

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distri-
bution. In Advances in Neural Information Processing Systems, 2019. 7, 46, 47, 57, 64

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
In Advances in Neural Information Processing Systems, 2020. 50

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training
of score-based diffusion models. Advances in Neural Information Processing Systems, 34:
1415–1428, 2021a. 12, 13

197



Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021b. 7, 44, 46, 47, 57, 60, 61, 64

Bharath K Sriperumbudur and Nicholas Sterge. Approximate kernel PCA: Computational versus
statistical trade-off. The Annals of Statistics, 50(5):2713–2736, 2022. 103, 113

Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Aapo Hyvärinen, and Revant
Kumar. Density estimation in infinite dimensional exponential families. arXiv preprint
arXiv:1312.3516, 2013. 32, 37

Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Matteo Carandini, and Kenneth D
Harris. High-dimensional geometry of population responses in visual cortex. Nature, 571
(7765):361–365, 2019. 118

Andre Stuhlsatz, Jens Lippel, and Thomas Zielke. Feature extraction with deep neural networks
by a generalized discriminant analysis. IEEE Transactions on Neural Networks and Learning
Systems, 23(4):596–608, 2012. 73

Jeremias Sulam, Vardan Papyan, Yaniv Romano, and Michael Elad. Multilayer convolutional
sparse modeling: Pursuit and dictionary learning. IEEE Transactions on Signal Processing,
66(15):4090–4104, 2018. 19, 84, 89, 91, 92

Jeremias Sulam, Aviad Aberdam, Amir Beck, and Michael Elad. On multi-layer basis pur-
suit, efficient algorithms and convolutional neural networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019. 19, 84, 89

Nazneen N Sultana, Bappaditya Mandal, and Niladri B Puhan. Deep residual network with
regularised Fisher framework for detection of melanoma. IET Computer Vision, 12(8):1096–
1104, 2018. 73

Kai Sun, Jiangshe Zhang, Hongwei Yong, and Junmin Liu. FPCANet: Fisher discrimination
for principal component analysis network. Knowledge-Based Systems, 166:108–117, 2019. 73

Xiaoxia Sun, Nasser M Nasrabadi, and Trac D Tran. Supervised deep sparse coding networks. In
2018 25th IEEE International Conference on Image Processing (ICIP), pages 346–350, 2018.
19, 84, 89, 91, 92

Danica J Sutherland, Heiko Strathmann, Michael Arbel, and Arthur Gretton. Efficient and prin-
cipled score estimation with nyström kernel exponential families. In International Conference
on Artificial Intelligence and Statistics, pages 652–660. PMLR, 2018. 32, 37

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 13(1), 2019. URL http://www.
incompleteideas.net/IncIdeas/BitterLesson.html. 6

Matthias Thamm, Max Staats, and Bernd Rosenow. Random matrix analysis of deep neural
network weight matrices. Physical Review E, 106(5):054124, 2022. 24, 98, 105, 115, 121, 125

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 58(1):267–288, 1996. 9, 18

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,
and Alexey Dosovitskiy. MLP-Mixer: An all-MLP architecture for vision. Advances in neural
information processing systems, 34:24261–24272, 2021. 88

198

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Asher Trockman, Devin Willmott, and J Zico Kolter. Understanding the covariance structure
of convolutional filters. In International Conference on Learning Representations, 2023. 111

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computa-
tional mathematics, 12:389–434, 2012. 103

Mark Tygert, Joan Bruna, Soumith Chintala, Yann LeCun, Serkan Piantino, and Arthur Szlam.
A mathematical motivation for complex-valued convolutional networks. Neural computation,
28(5):815–825, 2016. 86

Matej Ulicny, Vladimir A Krylov, and Rozenn Dahyot. Harmonic networks for image classifica-
tion. In Proceedings of the British Machine Vision Conference, Sep. 2019. 80, 88

Nicholas Vakhania, Vazha Tarieladze, and S Chobanyan. Probability distributions on Banach
spaces, volume 14. Springer Science & Business Media, 1987. 105

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural net-
works. In International conference on machine learning, pages 1747–1756. PMLR, 2016. 13

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. 6

Roman Vershynin. How close is the sample covariance matrix to the actual covariance matrix?
Journal of Theoretical Probability, 25(3):655–686, 2012. 37

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
Computation, 23(7):1661–1674, 2011. 12, 46, 61

Martin J Wainwright and Eero P Simoncelli. Scale mixtures of Gaussians and the statistics of
natural images. Advances in neural information processing systems, 12, 1999. 21, 46, 51

Martin J Wainwright, Odelia Schwartz, and Eero P Simoncelli. Natural image statistics and
divisive normalization: Modeling nonlinearities and adaptation in cortical neurons. Statistical
Theories of the Brain, 01 2001a. 93, 162

Martin J Wainwright, Eero P Simoncelli, and Alan S Willsky. Random cascades on wavelet
trees and their use in modeling and analyzing natural imagery. Applied and Computational
Harmonic Analysis, 11(1):89–123, Jul 2001b. 58

Ross Wightman, Hugo Touvron, and Hervé Jégou. ResNet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021. 6

Christopher Williams. Computing with infinite networks. Advances in Neural Information
Processing Systems, 9, 1996. 23, 98, 108

Kenneth G Wilson. Renormalization group and critical phenomena. II. Phase-space cell analysis
of critical behavior. Physical Review B, 4(9):3184, 1971. 14, 39, 46, 59

Kenneth G Wilson. The renormalization group and critical phenomena. Reviews of Modern
Physics, 55(3):583, 1983. 51

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay
Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized
models. In Conference on Learning Theory, pages 3635–3673. PMLR, 2020. 98

199



Lin Wu, Chunhua Shen, and Anton Van Den Hengel. Deep linear discriminant analysis on Fisher
networks: A hybrid architecture for person re-identification. Pattern Recognition, 65:238–250,
2017. 73

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma
with denoising diffusion GANs. arXiv preprint arXiv:2112.07804, 2021. 46, 52, 55

Greg Yang and Edward J Hu. Tensor programs IV: Feature learning in infinite-width neural
networks. In International Conference on Machine Learning, pages 11727–11737. PMLR,
2021. 23, 24, 98, 100, 108

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs V: Tuning large
neural networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466,
2022. 113

Zai Yang, Cishen Zhang, and Lihua Xie. On phase transition of compressed sensing in the
complex domain. IEEE Signal Processing Letters, 19(1):47–50, Jan 2012. ISSN 1558-2361. 89

Jason J Yu, Konstantinos G Derpanis, and Marcus A Brubaker. Wavelet flow: Fast training of
high resolution normalizing flows. Advances in Neural Information Processing Systems, 33:
6184–6196, 2020. 32, 52, 58

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7370–7379, 2017. 24, 118

John Zarka. Sparsity and Phase Collapse in Deep Convolutional Networks. Theses, Paris Sci-
ences et Lettres, 2022. 19, 21, 71, 83

John Zarka, Louis Thiry, Tomas Angles, and Stéphane Mallat. Deep network classification
by scattering and homotopy dictionary learning. In International Conference on Learning
Representations, 2020. 19, 81, 84, 89, 91

John Zarka, Florentin Guth, and Stéphane Mallat. Separation and concentration in deep net-
works. In International Conference on Learning Representations, 2021. 28, 71, 75

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part I 13, pages 818–833. Springer, 2014. 17

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential inte-
grator, 2022. 46, 52, 55

Jean Zinn-Justin. Quantum Field Theory and Critical Phenomena: Fifth Edition. Oxford
University Press, 04 2021. ISBN 9780198834625. 38, 42

José Manuel Zorrilla Matilla, Zoltán Haiman, Daniel Hsu, Arushi Gupta, and Andrea Petri. Do
dark matter halos explain lensing peaks? Phys. Rev. D, 94:083506, Oct 2016. 43, 140





MOTS CLÉS

réseaux de neurones convolutifs ⋆ apprentissage profond ⋆ vision par ordinateur ⋆ classification d’images ⋆
génération d’images ⋆ représentations multi-échelles

RÉSUMÉ

Les réseaux de neurones convolutifs profonds ont obtenu un succès considérable en vision par ordinateur, à la fois
pour l’apprentissage non-supervisé (i.e., génération d’image) et l’apprentissage supervisé (i.e., classification d’image).
Cependant, les principes fondamentaux derrière ces résultats impressionnants ne sont pas bien compris. En particulier,
l’apprentissage profond semble échapper à la malédiction de la dimensionalité, ce qui révèle une structure mathéma-
tique riche dans les problèmes d’apprentissage rencontrés en pratique. Cette structure est présente dans les interactions
entre les données d’entraînement (sur quelles propriétés se repose-t-on implicitement ?), l’architecture (quel est le rôle
fonctionnel rempli par ses composants ?) et l’algorithme d’optimisation (qu’est-ce que le réseau a appris ?). Cette thèse
comporte des résultats sur ces trois questions. Premièrement, nous montrons qu’une factorisation multi-échelles des
distributions d’images peut révéler des propriétés de régularité, des structures de dépendances markoviennes locales,
et même de la log-concavité conditionnelle, alors que la distribution globale ne possède pas ces propriétés. Cela con-
duit à des algorithmes efficaces d’apprentissage et d’échantillonnage dont on peut contrôler toutes les sources d’erreurs.
Deuxièmement, nous étudions le rôle de la non-linéarité en classification d’images, et montrons que sa fonction principale
est de collapser la phase complexe des coefficients d’ondelettes des activations du réseau. En revanche, des modèles
précédents reposant sur des seuillages et des hypothèses de parcimonie ne sont ni suffisants ni nécessaires pour ex-
pliquer la précision de classification des réseaux profonds. Troisièmement, nous introduisons un modèle probabiliste
des poids appris dans les architecture profondes, en capturant les dépendances entre couches par un alignement des
activations du réseau sur une représentation déterministe associée à un noyau reproduisant. Le modèle est spécifié à
travers des distributions à chaque couche, dont les covariances sont de bas rang et réalisent une réduction de dimen-
sionalité entre les plongements en haute dimension calculés par la non-linéarité. Dans certains cas, ces distributions
sont approximativement gaussiennes, et leurs covariances capturent la performance et la dynamique d’entraînement du
réseau.

ABSTRACT

Deep convolutional neural networks have achieved considerable success in computer vision tasks, both in unsupervised
learning (e.g., image generation) and supervised learning (e.g., image classification). However, the fundamental prin-
ciples behind these impressive results remain not well understood. In particular, deep learning seemingly escapes the
curse of dimensionality in practice, which evidences a rich mathematical structure underlying real-world learning prob-
lems. This structure is revealed by the interplay between the training data (what properties are we implicitly relying
on?), the architecture (what is the functional role of network computations?), and the optimization algorithm (what has
the network learned?). This thesis presents results on these three questions. First, we demonstrate that a multiscale
factorization of image distributions can reveal properties of smoothness, local Markov dependency structure, and even
conditional log-concavity, whereas the global distribution does not enjoy these properties. It leads to efficient learning
and sampling algorithms where all sources of errors can be controlled. Second, we investigate the role of non-linearity in
image classification, and show that its main function is to collapse the phase of complex wavelet coefficients of network
activations. In contrast, previous models based on thresholding and sparsity assumptions are neither sufficient nor neces-
sary to explain the classification accuracy of deep networks. Third, we introduce a probabilistic model of learned weights
in deep architectures, with layer dependencies that are captured by alignment of the network activations to deterministic
kernel embeddings. The model is specified through weight distributions at each layer, whose covariances are low-rank
and perform dimensionality reduction in-between the high-dimensional embeddings computed by the non-linearities. In
some cases, these weight distributions are approximately Gaussian, and their covariances capture the performance and
training dynamics of the network.

KEYWORDS

convolutional neural networks ⋆ deep learning ⋆ computer vision ⋆ image classification ⋆ image generative
modeling ⋆ multiscale representations


	Résumé
	Abstract
	Remerciements
	Introduction
	Curse of dimensionality and structure in computer vision
	Learning models of high-dimensional probability distributions
	The curse of dimensionality in supervised learning
	The curse of dimensionality in unsupervised learning
	Deep convolutional neural networks
	Leveraging structure to escape the curse of dimensionality

	Properties of wavelet conditional probability distributions
	Score-based diffusions and autoregressive factorizations
	Conditional log-concavity of physical fields
	Conditional locality and regularity of natural images

	Non-linear operators for image classification
	Separation and concentration in deep networks
	Concentration with thresholdings in sparse representations
	Separation with phase collapses of wavelet coefficients

	A model of network weights with aligned random features
	Random-feature kernels in deep networks
	Evolution of kernels and training dynamics
	Alignment convergence: the rainbow model

	Organization of the dissertation

	I Properties of Wavelet Conditional Probability Distributions
	Conditionally Strongly Log-Concave Generative Models
	Introduction
	Conditionally strongly log-concave models
	Conditional factorization and log-concavity
	Learning guarantees with score matching
	Score matching with exponential families
	Sampling guarantees with MALA

	Wavelet packet conditional log-concavity
	Energies with scalar potentials
	Wavelet packets and renormalization group
	Multiscale scalar potentials

	Numerical results
	4 scalar potential energy
	Conditional log-concavity
	Application to cosmological data

	Discussion

	Wavelet Score-Based Generative Models
	Introduction
	Sampling and discretization of score-based generative models
	Score-based generative models
	Discretization of SGMs and score regularity

	Wavelet score-based generative models
	Wavelet whitening and cascaded SGMs
	Discretization and accuracy for Gaussian processes

	Acceleration with WSGM: numerical results
	Physical processes with scalar potentials
	Scale-wise time reduction in natural images 

	Discussion

	Multiscale Local Conditional Models of Images
	Introduction
	Markov wavelet conditional models
	Score-based markov wavelet conditional models
	Markov wavelet conditional denoising
	Markov wavelet conditional super-resolution and synthesis
	Discussion


	II Non-Linear Operators for Image Classification
	Separation and Concentration in Deep Networks
	Introduction
	Classification by separation and concentration
	Tight frame rectification and thresholding
	Two-layer networks without bias

	Deep learning by scattering and concentrating
	Scattering cascade of wavelet frame separations
	Separation and concentration in learned scattering networks

	Discussion

	Phase Collapse in Deep Networks
	Introduction
	Eliminating spatial variability with phase collapses
	Learned scattering network with phase collapses
	Phase collapses versus amplitude reductions
	Iterating phase collapses and amplitude reductions
	Iterated phase collapses
	Iterated amplitude reductions

	Discussion


	III A Model of Network Weights with Aligned Random Features
	The Rainbow Model of Deep Networks
	Introduction
	Rainbow networks
	Rotations in random feature maps
	Deep rainbow networks
	Symmetries and convolutional rainbow networks

	Numerical results
	Convergence of activations in the infinite-width limit
	Properties of learned weight covariances
	Gaussian rainbow approximations

	Discussion


	Conclusion
	Conclusion
	Summary of findings
	Perspectives


	Appendices
	Appendix for Chapter 2
	Definition of wavelet packet projectors
	Conjugate mirror filters
	Orthogonal frequency decomposition
	Wavelet packet projectors

	Score matching and MALA algorithms for CSLC exponential families
	Multiscale energies
	Pseudocode

	Experimental details
	Datasets
	Experimental setup
	Mixing times in MALA

	Energy estimation with free-energy modeling
	Free-energy score matching
	Parameterized free-energy models
	Multiscale energy decomposition

	Proof of Proposition 2.3

	Appendix for Chapter 3
	WSGM algorithm
	Introduction to the fast orthogonal wavelet transform
	Experimental details on Gaussian experiments
	Experimental details on the 4 model
	Experimental details on CelebA-HQ

	Appendix for Chapter 4
	Proof of Theorem 4.1
	Proof of equation (4.5)
	Training and architecture details
	Wavelet conditional synthesis algorithm

	Appendix for Chapter 5
	Proof of Proposition 5.1
	Proof of Theorem 5.2
	Implementation and network dimensions

	Appendix for Chapter 6
	Proof of Theorem 6.1
	Proof of equation (6.4)
	Proof of Theorem 6.2
	Proof of Theorem 6.3
	Experimental details

	Appendix for Chapter 7
	Proof of Theorem 7.1
	Proof outline
	Proof of Lemma F.1
	Proof of Lemma F.2
	Proof of Lemma F.3
	Proof of Lemma F.4

	Proof of Theorem 7.2
	Proof of Theorem 7.3
	Experimental details


	Bibliography

